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ABSTRACT

Statistical inference – estimation and testing – for stochastic volatility models is challenging and computationally
expensive. This problem is compounded when leverage effects are allowed. We propose efficient simple estimators
for higher-order stochastic volatility models with leverage [SVL(p)], based on a small number of moment equations
derived from ARMA representations associated with SVL models, along with the possibility of using “winsorization”
to improve stability and efficiency (W-ARMA estimators). The asymptotic distributional theory of the estimators is
derived. The computationally simple estimators proposed allow one to easily perform simulation-based (possibly
exact) tests, such as Monte Carlo tests (MCT) or bootstrap procedures. In simulation experiments, we show that: (1)
the proposed W-ARMA estimators dominate alternative estimators (including Bayesian estimators) in terms of bias,
root-mean-square error, and computation time; (2) local and maximized Monte Carlo tests based on W-ARMA esti-
mators yield good control of the size and power of LR-type tests; (3) taking into account leverage improves volatility
forecasting. The methods developed are applied to daily returns for three major stock indices (S&P 500, Dow Jones,
Nasdaq), confirming the superiority of SVL(p) models over competing conditional volatility models in terms of fore-
cast accuracy.

Key words: Stochastic volatility, financial leverage, asymptotic distribution, higher-order process.
JEL Classification: C15, C22, C53, C58.
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1 Introduction

Stochastic volatility (SV) models, originally proposed by Taylor (1982, 1986), constitute a fundamental model of

fluctuating volatility in financial and macroeconomic time series. In this paper, we consider higher-order stochastic

volatility models with a leverage effect [SVL(p)], where the underlying volatility process follows an autoregressive

process of order p. The leverage effect refers to the inverse relationship between asset returns and volatilities: when

asset prices decrease, volatility tends to increase due to the rise in debt-equity ratio, making the asset riskier; see

Black (1976) and Christie (1982) for initial discussions. SVL models are empirically significant, due to the ability

of capturing asymmetric effects in financial markets. Applications include modeling volatility clustering and per-

sistence [Harvey and Shephard (1996)], improving option pricing [Hull and White (1987), Bates and Watts (1988)],

implementing more effective risk mitigation strategies [Chen et al. (2019)], making better-informed asset allocation

decisions [Andersen and Bollerslev (1998)], forecasting volatility during periods of market stress and uncertainty

[Barndorff-Nielsen et al. (2002)], providing a better empirical understanding of market behavior [Andersen et al.

(2003)], etc.

While the SVL model is conceptually simple and theoretically appealing, it poses difficulties for estimation due

to the presence of latent variables. Inference on SVL models are thus challenging tasks. The existing methods are

mostly limited to the SVL(1) model, computationally expensive, difficult to implement, and typically inefficient.

Notable work includes quasi-maximum likelihood (QML) [Harvey and Shephard (1996)] and Bayesian techniques

based on Markov Chain Monte Carlo (MCMC) methods [Jacquier et al. (2004), Omori et al. (2007)]. The estimation

of SVL(p) models is even more challenging and remains unexplored in the literature, primarily due to their intrinsic

complexity.

In this paper, we extend the simple estimator of Ahsan and Dufour (2021) designed for SV(p) models, and we de-

velop a closed-form estimator for SVL(p) models based on the moment structure of the logarithm of squared resid-

ual returns. The proposed moment-based closed-form estimator [which we call the CF-ARMA estimator] utilizes

the ARMA representation associated with SVL models. It offers analytical tractability and computational efficiency.

Specifically, it can be easily implemented without relying on numerical optimization, and eliminates the need for

arbitrary initial parameters or auxiliary models.

However, the CF-ARMA estimator may not satisfy stationarity conditions when the sample is not sufficiently large

or in the presence of outliers. To overcome this issue, we consider two approaches.

1. A restricted estimation approach, which confines the estimates within an acceptable parameter solution

space by adjusting the roots that lie on or outside the unit circle.

2. Winsorized versions of the ARMA-type estimator [which we call W-ARMA estimators]. These modifications

significantly increase the likelihood of obtaining acceptable values and improve efficiency [see Hafner and

Linton (2017), Ahsan and Dufour (2021)].

In winsorized estimators, the autoregressive parameters of the latent volatility process – which capture volatility

clustering – are estimated using an OLS-based weighting. For details on other weighting schemes and simulation
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experiments regarding precision improvement, see Ahsan and Dufour (2019, 2021). This computationally simple

adjustment enhances the stability and accuracy of the estimators. In particular, an OLS-based W-ARMA estima-

tor consistently outperforms all other estimators in terms of bias and RMSE by a significant margin, including the

Bayesian estimator proposed in this context. The W-ARMA-OLS estimator proposed in this paper can be interpreted

as a parsimonious moment-based estimator, where only a few well-chosen moments are utilized. In moment-based

(or GMM) inference, employing too many moments can prove to be very costly from the perspective of estimation

efficiency and forecasting [see Ahsan and Dufour (2020)]. To be more specific, the other contributions of the paper

can be summarized as follows.

First, utilizing these simple estimators, we formulate recursive estimation methods for SVL(p) models by using a

Durbin-Levinson-type (DL) algorithm. We discuss the algorithmic framework that extends the recursion outlined

in Tsay and Tiao (1984), which is applicable to autoregressive-moving average models and facilitates the recursive

computation of parameters for higher-order SV processes. In addition, the asymptotic properties of the proposed

simple estimators are established under standard regularity assumptions, demonstrating consistency and asymp-

totic normality when the fourth moment of the latent volatility process exists.

Second, we emphasize that the proposed computationally inexpensive estimators can be useful in several ways.

• Since SVL models are parametric models involving only a finite number of unknown parameters (which can

be easily estimated by our method), one can construct simulation-based tests, even exact tests based on

the Monte Carlo test (MCT) technique [see Dufour (2006)], as opposed to procedures based on establish-

ing asymptotic distributions. In particular, exact tests obtained in this way do not depend on stationarity

assumptions, so that they can be useful when the latent volatility process has a unit root (or is close to this

structure).

• The proposed estimators are helpful for procedures which require repeated estimation based on a rolling

window method, e.g. backtesting of risk measures (such as Value-at-Risk or Expected Shortfall) in the context

of risk management.

• Due to the
p

T -consistency, our simple estimators can be effortlessly applied to very large samples, which

are not rare in empirical finance, e.g. high-frequency financial returns. In these situations, estimators based

on simulation techniques and/or numerical optimization often require substantial computational effort to

achieve convergence.

Third, we study by simulation the statistical properties of our estimators and compare them with QML and

Bayesian methods. The simulation results confirm that W-ARMA estimators have excellent statistical properties

in terms of bias and RMSE. In particular, it outperforms all other estimators studied, including the Bayesian esti-

mator. Furthermore, the proposed ARMA estimators (CF-ARMA and W-ARMA) are extremely efficient in terms of

computation time, especially when compared with Bayesian estimators.

Fourth, in a further simulation study, we compare the forecasting performance of SV(p) models with SVL(p) mod-

els in the presence of leverage in the true data. We consider different values of the leverage parameter for both p = 1

and p = 2 models. By employing the MSE loss function with the Diebold-Mariano (DM) test, we find that SVL(p)
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models consistently outperform SV(p) models in terms of forecast accuracy. We investigate two data generating

processes (DGPs) with p = 1, 2, as well as different forecasting horizons. Our findings reveal that, even though the

difference in mean squared error (MSE) decreases with longer forecasting horizons, a statistically significant differ-

ence persists which favours SVL models.

Fifth, we study the performance of likelihood-ratio-type (LR-type) tests based on W-ARMA estimators for the no

leverage hypothesis. Three approaches for controlling the level of the tests are considered: (1) using a standard chi-

square asymptotic approximation; (2) local Monte Carlo (LMC) tests (or parametric bootstrapping); (3) maximized

Monte Carlo (MMC) tests. Our results show that asymptotic tests are quite unreliable in all scenarios, and exhibit

very high degree of over-rejection frequencies. While the LMC method offers improved performance, it still exhibits

some degree of over-rejection, particularly evident when the volatility process is highly persistent. In contrast, the

MMC procedure consistently maintains control over size, demonstrating robustness even with high persistence. Ad-

ditionally, when considering level-corrected power (for Asymptotic and LMC tests), we find that LMC performs com-

parably to infeasible asymptotic tests (infeasible because the true distribution of the test statistic is unknown), while

MMC stands out for its effectiveness in power. Moreover, we observe a decline in power with increasing volatility

persistence, although larger sample sizes substantially increase power.

Finally, we present applications to daily observations on the returns for three major stock indices – S&P 500, Dow

Jones, and NASDAQ – over the period 2000-2023. Using W-ARMA estimation, we find that the returns on these

stocks exhibit stochastic volatility with strong persistence. The leverage parameter exhibits significantly high values

for all three indices when estimating the SVL(1) model, while low values are observed for SVL(2) and SVL(3) models.

Moreover, we implemented MCT techniques to construct more reliable finite-sample inference, particularly since

the estimated volatility persistence parameter is close to the unit circle. Tests of on leverage reject the null hypothesis

of no leverage when estimating the SVL(1) model. However, for the SVL(2) and SVL(3) models, the asymptotic test

still rejects the null hypothesis of no leverage. Conversely, LMC and MMC methods suggest that for SVL(2) and

SVL(3) models, we lack sufficient evidence to reject the null hypothesis of no leverage. Our forecasting experiment

also shows that the out-of-sample forecasting performance of SVL(p) models is superior to alternative conditional

volatility models [GARCH and SV(p)].

This paper is organized as follows. Section 2 specifies the model, assumptions, and motivation. Section 3 de-

scribes the simple estimators for SVL(p) models. Section 4 develops the asymptotic distributional theory for these

estimators, and Section 5 discusses volatility forecasting with SVL(p) models. Section 6 discusses how finite-sample

Monte Carlo tests can be applied using the proposed simple estimator. Section 7 presents the simulation study re-

lated to estimation, testing and forecasting. The empirical application is presented in Section 8. We conclude in

Section 9. The mathematical proofs, other discussions, and additional results are provided in Appendix.

2 Framework

We consider a discrete-time SVL process of order (p), which can be viewed as an extension of the models considered

by Harvey and Shephard (1996) and Omori et al. (2007). Specifically, we say that a variable yt follows a stationary
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SVL(p) process if it satisfies the following assumptions, where t ∈N0, and N0 represents the non-negative integers.

Assumption 2.1. STOCHASTIC VOLATILITY MODELS WITH LEVERAGE OF ORDER (p). The process
{

yt : t ∈N0
}

satisfies

the equations:

yt =σy exp(wt /2)zt , zt ∼ i.i.d. N (0, 1) , (2.1)

wt =
p∑

j=1
φ j wt− j +σv vt , vt ∼ i.i.d. N (0, 1) , (2.2)

E[zt−1, vt ] = corr(zt−1, vt ) = δp , (2.3)

where (φ1, . . . , φp , σy , σv , δp )
′

are fixed parameters, σy > 0 and σv > 0 control for the level and variance of the latent

log volatility process, and δp ∈ (−1,1) and for any i ̸= 1 and any t , corr(zt−i , vt ) = 0. δp is the leverage parameter,

which represents the lag correlation between returns and log volatility shocks.

Assumption 2.2. STATIONARITY. The process lt = (yt , wt )
′

is strictly stationary.

The latter assumption requires that all the roots of the characteristic equation of the volatility process [φ(z) = 0] lie

outside the unit circle [i.e., φ(z) ̸= 0 for |z| ≤ 1]. This model consists of two stochastic processes, where yt describes

the dynamics of asset returns, and wt := log(σ2
t ) captures the dynamics of latent log volatilities.1 The latent process

wt can be interpreted as a random flow of uncertainty shocks or new information in financial markets, the φ j ’s

capture volatility persistence, and δp represents the leverage effect. If δp < 0, given a negative shock to yt at time

t −1, the volatility at time t tends to be larger.

Compared with the SV(p) model in Ahsan and Dufour (2021), a dependence structure between zt−1 and vt is

allowed in this SVL(p) model.2 So the SVL(p) model, defined in Assumptions 2.1 - 2.2, has p + 3 fixed parameters

and has one additional leverage parameters compared to Ahsan and Dufour (2021). On setting p = 1, we get the

SVL(1) model, considered by Harvey and Shephard (1996), Omori et al. (2007) and Yu (2005).3 This model is the

Euler approximation to the continuous time asymmetric SV model widely used in the option pricing literature; see

for example Hull and White (1987), Wiggins (1987), and Chesney and Scott (1989). This SVL(1) model is estimated by

QML in Harvey and Shephard (1996) and by MCMC in Omori et al. (2007). As argued in Harvey and Shephard (1996),

this model is a martingale difference sequence, consistent with the efficient market hypothesis. This is obvious

because for SVL models, we have:

E[yt+1|yt , wt ] =σy exp
(
φwt /2

)
E[exp

(
σv vt+1/2

)
]E[zt+1|yt , wt ] = 0. (2.4)

1Usually the yt ’s are residual returns, such that yt := rt −µr and rt := 100[log(pt )− log(pt−1)], where µr is the mean of returns
(rt ) and pt is the raw prices of an asset. It is noteworthy to mention that yt is ordinarily the error term of any time series
regression model, see Jurado et al. (2015).

2The leverage effect is that stock volatility is correlated to stock returns and it is an empirical fact that stock volatility tends to
increase when stock prices drop. There are two common economic explanations for the leverage effect. The first explanation is
based on the relationship between volatility and expected returns. When volatility rises, expected returns tend to increase, leading
to a drop in the stock price. As a consequence, volatility and stock returns are negatively correlated. The second explanation is
based on financial leverage. When stock prices fall, financial leverage increases, leading to an increase in stock return volatility.

3Instead of assuming corr(zt−1, vt ) = δp , Jacquier et al. (2004) adopt the specification of corr(zt , vt ) = δp .
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Since the disturbances (zt−1, v ′
t )′ are conditionally Gaussian, we can write

vt = δp zt−1 + (1−δ2
p )1/2 v̄t , (2.5)

where v̄t ∼ N (0,1). The state equation (2.2) can then be reformulated as:

wt =
p∑

j=1
φ j wt− j +δpσv zt−1 + (1−δ2

p )1/2σv v̄t . (2.6)

Let us now transform yt by taking the logarithm of its squared value. We get in this way the following measurement

equation:

log(y2
t ) = log(σ2

y )+wt + log(z2
t ) =µ+wt +ϵt (2.7)

where µ := E[log(y2
t )] = log(σ2

y )+E[log(z2
t )] and ϵt := log(z2

t )−E[log(z2
t )]. Under the normality assumption on zt , the

errors ϵt are i.i.d. according to the distribution of a centered log(χ2
1) random variable [i.e., ϵt has mean zero and

variance E(ϵ2
t )] and

E[log(z2
t )] =ψ(1/2)+ log(2) ≃−1.2704, σ2

ϵ := E(ϵ2
t ) =π2/2, E(ϵ3

t ) =ψ(2)(1/2) , E(ϵ4
t ) =π4 +3σ2

ϵ , (2.8)

where ψ(2)(z) is the polygamma function of order 2; see Abramowitz and Stegun (1970, Chapter 6).4 On setting

y∗
t := log(y2

t )−µ (2.9)

and combining (2.6) and (2.7), the SVL(p)model can be written in state-space form:

State Transition Equation: wt =
p∑

j=1
φ j wt− j + δ̃p zt−1 + σ̃v v̄t , (2.10)

Measurement Equation: y∗
t = wt +ϵt , (2.11)

where δ̃p := δpσv , σ̃v :=
√(

1−δ2
p

)
σv , and v̄t ’s are i.i.d. N (0,1) and ϵt ’s are i.i.d. log(χ2

1). Note that transformed

structural error v̄t is uncorrelated with zt and also its transformed error ϵt .

3 Simple SV estimation with leverage

In this section, we propose simple estimators for SVL(p) models, including a corresponding recursive procedure.

Besides, we suggest alternative methods to improve the performance of these simple estimators.

3.1 ARMA-based estimation

In this subsection, we propose another simple estimator for SVL(p) models, which exploits the autocovariance struc-

ture of y∗
t . This estimator is based on considering a small set of moments associated with y∗

t = log(y2
t )−µ, and the

fact that this process has an ARMA representation.

4The log(χ2
1) distribution is often approximated by a normal distribution with mean of −1.2704 and variance of π2/2 [see Broto

and Ruiz (2004)], or by a mixture distribution [Kim et al. (1998)].
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Proposition 3.1. ARMA REPRESENTATION OF SVL(P) MODELS. Under the Assumptions 2.1 - 2.2, the process y∗
t

defined in (2.9) has the following ARMA(p, p) representation:

y∗
t =

p∑
j=1

φ j y∗
t− j +ηt −

p∑
j=1

θ jηt− j , (3.1)

ηt −
p∑

j=1
θ jηt− j = vt +ϵt −

p∑
j=1

φ j ϵt− j , (3.2)

where {vt } and {ϵt } are mutually independent error processes, the errors vt are i.i.d. N (0,σ2
v ), and the errors ϵt are

i.i.d. according to the distribution of a log(χ2
1) random variable.

From the above proposition, we derive simple expressions for the autocovariances and parameters of the SVL(p)

model.

Corollary 3.2. AUTOCOVARIANCES OF THE OBSERVED PROCESS. Under the Assumptions of Proposition 3.1, the auto-

covariances of the observed process y∗
t defined in (2.9) satisfy the following equations:

cov(y∗
t , y∗

t−k ) := γy∗ (k) =


φ1γy∗ (k −1)+·· ·+φpγy∗ (k −p)+σ2

v +σ2
ϵ if k = 0

φ1γy∗ (k −1)+·· ·+φpγy∗ (k −p)−φkσ
2
ϵ if 1 ≤ k ≤ p

φ1γy∗ (k −1)+·· ·+φpγy∗ (k −p) if k > p .

(3.3)

In order to get the unsquared parameter solution for δp , we will exploit the following lemma.

Lemma 3.3. MOMENT EQUATION INVOLVING UNSQUARED LEVERAGE PARAMETER. Under Assumptions 2.1 - 2.2, the

following moment condition holds:

E
[|yt |yt−1

]= δσvσ
2
yp

2π
exp

(
γ̃p /4

)
(3.4)

where γ̃p := var(wt )+cov(wt , wt−1).

Corollary 3.4. CLOSED-FORM EXPRESSIONS FOR SVL(p) PARAMETERS. Under the Assumptions of Proposition 3.1,

we have:

φp =Γ (p, j )−1γ(p, j ), j ≥ 1, (3.5)

σy = [exp(µ+1.2704)]1/2 , σv = [γy∗ (0)−φ′
pγ(1)−π2/2]1/2, (3.6)

δp =
p

2πλy (1)

σvσ
2
y

exp
(
− 1

4
γ̃p

)
, (3.7)

where λy (1) := E[|yt |yt−1], γ̃p := var(wt )+cov(wt , wt−1), φp := (φ1, . . . , φp )
′
,

γ(p, j ) := [γy∗ (p + j ), . . . , γy∗ (2p + j −1)]
′
, γ(p) := [γy∗ (1), . . . , γy∗ (p)]

′
(3.8)
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are p ×1 vectors, and Γ (p, j ) is the following p ×p matrix:

Γ (p, j ) :=



γy∗ ( j +p −1) γy∗ ( j +p −2) · · · γy∗ ( j )

γy∗ ( j +p) γy∗ ( j +p −1) · · · γy∗ ( j +1)
...

...
...

γy∗ ( j +2p −2) γy∗ ( j +2p −3) · · · γy∗ ( j +p −1)

 , (3.9)

where p is the SV order, γy∗ (k) = cov(y∗
t , y∗

t−k ), with y∗
t = [log(y2

t )−µ] and µ := E[log(y2
t )]. Expressions of δp for the

lower order SVL(p) models are:

δ1 =
p

2πλy (1)

σvσ
2
y

exp

(
− 1

4

σ2
v

1−φ1

)
, (3.10)

δ2 =
p

2πλy (1)

σvσ
2
y

exp

(
− 1

4

σ2
v

(1−φ1 −φ2)(1+φ2)

)
, (3.11)

δ3 =
p

2πλy (1)

σvσ
2
y

exp

(
− 1

4

(1−φ3)σ2
v

(1−φ1 −φ2 −φ3)(1+φ1φ3 +φ2 −φ2
3)

)
, (3.12)

δ4 =
p

2πλy (1)

σvσ
2
y

exp

(
− 1

4

(1−φ3 −φ1φ4 −φ2
4)(1−φ1 −φ2 −φ3 −φ4)−1σ2

v

(1+φ1φ3 +φ2 +φ4 +2φ2φ4 +φ2
1φ4 +φ2φ

2
4 −φ2

3 −φ2
4 −φ3

4 −φ1φ3φ4)

)
. (3.13)

It is natural to estimate γy∗ (k) and µ by the corresponding empirical moments:

γ̂y∗ (k) = 1

T −k

T−k∑
t=1

y∗
t y∗

t+k , µ̂= 1

T

T∑
t=1

log(y2
t ) , λ̂y (1) := 1

T −1

T−1∑
t=1

[|yt |yt−1] , (3.14)

where y∗
t is a mean corrected process (by construction). Setting j = 1 in (3.5) and replacing theoretical moments by

their corresponding empirical moments in (3.5)-(3.7) yield the following simple CF-ARMA estimator of the SVL(p)

coefficients:

φ̂p = Γ̂ (p, 1)−1γ̂(p, 1) , σ̂y = [exp(µ̂+1.2704)]1/2 , σ̂v = [γ̂y∗ (0)− φ̂
′
p γ̂(p)−π2/2]1/2, (3.15)

δ̂p =
p

2πλ̂y (1)

σ̂v σ̂
2
y

exp
(
− 1

4
̂̃γp

)
, (3.16)

where expressions of δ̂p for the lower order SVL(p) models are:

δ̂1 =
p

2πλ̂y (1)

σ̂v σ̂
2
y

exp

(
− 1

4

σ̂2
v

1− φ̂1

)
, (3.17)

δ̂2 =
p

2πλ̂y (1)

σ̂v σ̂
2
y

exp

(
− 1

4

σ̂2
v

(1− φ̂1 − φ̂2)(1+ φ̂2)

)
, (3.18)

δ̂3 =
p

2πλ̂y (1)

σ̂v σ̂
2
y

exp

(
− 1

4

(1− φ̂3)σ̂2
v

(1− φ̂1 − φ̂2 − φ̂3)(1+ φ̂1φ̂3 + φ̂2 − φ̂2
3)

)
, (3.19)

δ̂4 =
p

2πλ̂y (1)

σ̂v σ̂
2
y

exp

(
− 1

4

(1− φ̂3 − φ̂1φ̂4 − φ̂2
4)(1− φ̂1 − φ̂2 − φ̂3 − φ̂4)−1σ̂2

v

(1+ φ̂1φ̂3 + φ̂2 + φ̂4 +2φ̂2φ̂4 + φ̂2
1φ̂4 + φ̂2φ̂

2
4 − φ̂2

3 − φ̂2
4 − φ̂3

4 − φ̂1φ̂3φ̂4)

)
. (3.20)
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3.2 Restricted estimation

These simple estimators yield values outside the admissible area, i.e., some of the roots of the latent volatility AR(p)

model may not correspond to a stationary process. This issue can arise especially in small samples or in the presence

of outliers. When this happens, a simple fix consists in altering the eigenvalues that lie on or outside the unit circle.

The characteristic equation of the latent AR(p) process is given by C (λ) =λp−φ1λ
p−1−·· ·−φp = 0, and the stationary

condition requires all roots lie inside the unit circle, i.e., |λi | < 1, i = 1, . . . , p. If the estimated parameters fail to

satisfy this condition, then the restricted estimation can be done in the following two steps:

1. given the estimated unstable parameters, we calculate the roots of the characteristic equation and restrict

their absolute values to less than unity;

2. given these restricted roots, we calculate constrained parameters ensuring stationarity.

For an SVL(2) model, the characteristic equation of the latent volatility process is C (λ) = λ2 −φ1λ−φ2 = 0. It

may have two types of roots: (i) if φ2
1 + 4φ2 ≥ 0, then C (λ) has two real roots given by λ1,2 = [φ1 ±

√
φ2

1 +4φ2]/2 ;

(ii) if φ2
1 + 4φ2 < 0 then C (λ) has two complex roots given by λ1,2 = [φ1 ± i

√
−(φ2

1 +4φ2)]/2 . When the estimated

polynomial coefficients produce an unstable solution, then we restrict the absolute value of the roots less than unity,

i.e. |λ1,2| < 1 or |λ1,2| = 1−∆ where ∆ is a very small number. Given these restricted roots, we solve for restricted

parameters which ensure stationarity. These steps can be done very easily in MATLAB. In MATLAB, the roots function

calculates the roots given the parameters, and the poly function calculates the parameters given the roots. Further,

the estimate δ̂p may yield a value outside the acceptable region (−1, 1). In this case, we can restrict it within the

admissible parameter space.

3.3 ARMA-based winsorized estimation

We can achieve better stability and efficiency of the CF-ARMA estimator by using “winsorization”. This procedure

substantially increases the probability of getting admissible values. From (3.5), it is easy to see that

φp =
∞∑

j=1
ω j B(p, j ) =

∞∑
j=1

ω j Γ (p, j )−1γ(p, j ) (3.21)

for any ω j sequence with
∑∞

j=1ω j = 1, where

B(p, j ) :=Γ (p, j )−1γ(p, j ) = [B(p, j )1, . . . , B(p, j )p ]′ (3.22)

is a p ×1 vector. Using (3.21), we can define a more general class of estimators for φp by taking a weighted average

of several sample analogs of the p ×1 vector:

φ̃p :=
J∑

j=1
ω j B̂(p, j ) , B̂(p, j ) := Γ̂ (p, j )−1γ̂(p, j ) = [B̂(p, j )1, . . . , B̂(p, j )p ]′, (3.23)

where
∑J

j=1ω j = 1, 1 ≤ J ≤ T −p, and T is the length of time series. We can expect that a sufficiently general class of

weights will improve the efficiency of the CF-ARMA estimator.
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Using (3.23), we propose alternative estimators of φp and we call these estimators winsorized ARMA estimators

(or W-ARMA estimators). For a full list of W-ARMA methods, see Appendix B. These estimation techniques have

been examined within the framework of SV(p) models by Ahsan and Dufour (2021) and have also been explored by

EGARCH(1, 1) in the context of closed-form estimation for the EGARCH(1,1) model.

In this paper, we use a W-ARMA estimator based on an OLS regression without intercept, since its performance

stands out among the W-ARMA methods [see Section 6 of Ahsan and Dufour (2021)]:

φ̂
ols
p = [A(p, J )′A(p, J )]−1 A(p, J )′e(p, J ) (3.24)

where e(p, J ) is a (p J )×1 vector and A(p, J ) is a (p J )×p matrix defined by

e(p, J ) = [γ̂(p, 1)ω1/2
1 , . . . , γ̂(p, J )ω1/2

J ]′ , A(p, J ) = [Γ̂ (p, 1)ω1/2
1 , . . . , Γ̂ (p, J )ω1/2

J ]′ . (3.25)

Different OLS-based W-ARMA can be generated by considering different weights ω1, . . . ,ωJ . In our simulations be-

low as well as in empirical applications, we focus on the case where the weights are equal i.e., ω j = 1/J where

j = 1, . . . , J . For J = 1, this estimator is equivalent to the CF-ARMA estimator given in (3.15).

3.4 Recursive estimation for SVL(p) models

In this section, we describe a recursive estimation algorithm tailored for SVL(p) models. For ease of notation, we

adopt a different indexing scheme solely for the autoregressive parameters of the volatility process within this sec-

tion. For instance, the SVL(p) parameters are now represented as θSV L
p :=

({
φp, j

}
j=1,...,p ,σpv ,σy ,δp

)′
.

The recursive estimation of the CF-ARMA estimator capitalizes on the extended Yule-Walker (EYW) equations gov-

erning the observed process. When the MA order remains constant, the EYW equations form a nested Toeplitz sys-

tem. Introducing a Generalized Durbin-Levinson algorithm for the CF-ARMA estimator in the SVL(p) model proves

beneficial when neither the AR nor the MA order is predetermined. Here, we specifically examine the scenario where

i = p, meaning the MA order equals p, implying an identical AR order of p.

For i = 0, use the Durbin-Levinson algorithm to calculate
{
φ̂

(0)
p, j | p ≥ 1, j = 1, . . . , p

}
and for i ≥ 1, calculate

φ̂
(i−1)
p,0 =−1, φ̂

(i )
p, j = φ̂(i−1)

p+1, j −
φ̂

(i−1)
p+1,p+1

φ̂
(i−1)
p,p

φ̂
(i−1)
p, j−1 , p ≥ 1, j = 1, . . . , p , (3.26)

σ̂y = [exp(µ̂+1.2704)]1/2 , σ̂pv = [γ̂y∗ (0)−
p∑

j=1
φ̂p, j γ̂y∗ ( j )−π2/2]1/2 , (3.27)

δ̂p =
p

2πλ̂y (1)

σ̂v σ̂
2
y

exp
(
− 1

4
̂̃γp

)
, (3.28)

where full expressions of δ̂p for the lower order SVL(p) models are given in (3.16). This algorithm is the same as the

Tsay and Tiao (1984) algorithm [except for the equations involving σ̂y and σ̂pv ] for calculating the extended sample

autocorrelation function under the stationarity assumption.
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4 Asymptotic distributional theory

We derive the asymptotic properties of the CF-ARMA estimator θ̂ := (φ̂1, . . . , φ̂p , σ̂y , σ̂v )
′

under the following set of

assumptions.

Assumption 4.1. DISTRIBUTION OF THE ERROR PROCESS. The error processes zt and vt are mutually independent

and {zt } is a sequence of i.i.d. real-valued random variables, independent of w0. The probability distribution of zt

has a continuous density with respect to Lebesgue measure on real line, and its density is positive on (−∞, +∞). The

transformed error ϵt satisfies E(|ϵt |)s <∞, where s is an positive integer.

Assumption 4.2. STATIONARITY OF THE LATENT PROCESS. The latent process {wt } is strictly stationary with E(|wt |)s <
∞ and there is an integer s ≥ 1 such that E(|vt |)s <∞,

∑∞
j=1 |ψ̄ j |s <∞, where wt = φ−1(B)vt = ψ̄(B)vt which follows

from φ(z) ̸= 0 for |z| ≤ 1 , where the characteristic equation of the volatility process φ(z) := 1−φ1z −·· ·−φp zp = 0.

Under Assumptions 4.1 and 4.2 with s = 2, the observed process {y∗
t } is strictly stationarity and geometrically er-

godic with exponential β-mixing (see results of Stationarity, Ergodicity and Beta mixing in Ahsan and Dufour (2021))

with finite second moment, i.e., E
[
(y∗

t )2
] < ∞. In the following Lemma, using the Ergodic theorem, we prove the

consistency of the empirical moments in (3.14).

Lemma 4.1. CONSISTENCY OF EMPIRICAL MOMENTS. Under the Assumptions 4.1 and 4.2 with s = 2, the estimators

µ̂, λ̂y (1) and Γ̂(m) := [γ̂y∗ (0), γ̂y∗ (1), . . . , γ̂y∗ (m)]′ defined by (3.14) satisfy:

µ̂
p−→µ , λ̂y (1)

p−→λy (1) and Γ̂(m)
p−→Γ(m) := [γy∗ (0), γy∗ (1), . . . , γy∗ (m)]′ . (4.1)

Assumptions 4.1 and 4.2 with s = 4 are sufficient for the SVL model to have a strictly stationary solution with a

finite fourth moment of y∗
t , i.e., E

[
(y∗

t )4
]<∞. Note that the fourth moment of y∗

t translates into the eighth moment

of yt . This solution will be β-mixing with geometrically decreasing mixing coefficients. In the following Lemma,

using a Central Limit theorem for the stationary and ergodic process (Lindeberg-Levy theorem for the dependent

process), we present the asymptotic distribution of the empirical moments in (3.14).

Lemma 4.2. ASYMPTOTIC DISTRIBUTION OF EMPIRICAL MOMENTS. Under the Assumptions 4.1 and 4.2 with s = 4,

the estimators µ̂, λ̂y (1) and Γ̂(m) := [γ̂y∗ (0), γ̂y∗ (1), . . . , γ̂y∗ (m)]′ defined by defined by (3.14) satisfy:

p
T


µ̂−µ

Γ̂(m)−Γ(m)

λ̂y (1)−λy (1)

 d−→N

0,


Vµ C

′
µ,Γ(m) Cµ,λy (1)

Cµ,Γ(m) VΓ(m) CΓ(m),λy (1)

Cµ,λy (1) C
′
Γ(m),λy (1) Vλy (1)


 , (4.2)

where

Vµ = γy∗ (0)+2
∞∑
τ=1

γy∗ (τ) , VΓ(m) = Var(Λt )+2
∞∑
τ=1

cov(Λt ,Λt+τ) , Vλy (1) =λ2
y (1) , (4.3)

Cµ,Γ(m) = (c̄, 0[1×m])
′ , c̄ :=Cµ,Γ(0) = 2

∞∑
t=1
E[y∗3

t ] = 2
∞∑

t=1
E[ϵ3

t ] , Λt := [Λt ,0,Λt ,1, . . . ,Λt ,m]′ , (4.4)

Λt ,k := y∗
t y∗

t+k −γy∗ (k) = [log(y2
t )−µ][log(y2

t+k )−µ]−γy∗ (k) , k = 0, . . . , m , (4.5)
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Cµ,λy (1) = 2
∞∑

t=1

δpσvσ
2
yp

2π
exp

(γw (0)

4

)[
8− (

γϵ+ψ(0)(0.5)
)

exp
(γw (1)

4

)]
, (4.6)

CΓ(m),λy (1) = [Cλ0, Cλ1, . . . , Cλm]′ , (4.7)

Cλk = 2
∞∑

t=1

(
δpσvσ

2
yp

2π
exp

(γw (0)

4

)(
γw (0)+ ψ̄kγw (1)+0.5ψ̄kγw (k)+γw (k +1)− γϵ+ψ(0)(0.5)

2

))
,

k = 0, 1, 2, . . . , m. (4.8)

where ψ̄k is k-th parameter of the MA(∞) representation of the latent log volatility process, γw (k) = cov(wt , wt+k ),

ψ(0)(z) is the digamma function and γϵ is the Euler-Mascheroni constant.

This in turn yields the asymptotic distribution of the simple ARMA-type estimator (φ̂1, . . . , φ̂p , σ̂y , σ̂v ,δp )
′
.

Theorem 4.3. ASYMPTOTIC DISTRIBUTION OF SIMPLE ARMA-SV ESTIMATOR. Under the Assumptions 4.1 and 4.2

with s = 4, the estimator θ̂ := (φ̂1, . . . , φ̂p , σ̂y , σ̂v , δ̂p )
′

given in (3.15) is consistent, i.e., θ̂
p−→ θ, and

p
T (θ̂−θ)

d−→N (0,V ), (4.9)

where θ := (φ1, . . . , φp ,σy ,σv ,δp )
′

and

V =G(β)


Vµ C

′
µ,Γ(2p) Cµ,λy (1)

Cµ,Γ(2p) VΓ(2p) CΓ(2p),λy (1)

Cµ,λy (1) C
′
Γ(2p),λy (1) Vλy (1)

 G(β)
′
, (4.10)

G(β) := ∂Dp

∂β
′ , Dp := Dp (β) = (Dφp

, Dσy , Dσv , Dδp )
′
, β := [µ,γy∗ (0),γy∗ (1), . . . , γy∗ (2p),λy (1)]

′
, (4.11)

Dφp
:=Γ (p, 1)−1γ(p, 1) , Dσy := exp(µ+1.2704)1/2 , Dσv := [γy∗ (0)−φ′

pγ(1)−π2/2]1/2 , (4.12)

D δp =
p

2πλy (1)

σvσ
2
y

exp
(
− 1

4
γ̃p

)
, λy (1) := E[|yt |yt−1] , (4.13)

φp = (φ1, . . . , φp )
′
, γ(p, 1) = [γy∗ (p +1), . . . , γy∗ (2p)]

′
,γ(p) = [γy∗ (1), . . . , γy∗ (p)]

′
, (4.14)

Γ (p, 1)[p×p] =



γy∗ (p) γy∗ (p −1) · · · γy∗ (1)

γy∗ (p +1) γy∗ (p) · · · γy∗ (2)
...

...
...

γy∗ (2p −1) γy∗ (2p −2) · · · γy∗ (p)

 , (4.15)

γy∗ (k) = cov(y∗
t , y∗

t−k ) , y∗
t = (log y2

t −µ) , µ := E[log(y2
t )] , γ̃p := var(wt )+cov(wt , wt−1). (4.16)

The explicit form of the analytical moment derivative, G(β), is given in the proof. An estimator of the covariance

matrix V can be obtained by using heteroskedasticity and autocorrelation consistent (HAC) covariance estimators

[see Den Haan and Levin (1997) and Robinson and Velasco (1997)] and then substituting β̂ = [µ̂, γ̂y∗ (0), γ̂y∗ (1),

γ̂y∗ (2), . . . , γ̂y∗ (2p), λ̂y (1)]
′

into G(β). In our empirical applications, we use a Bartlett kernel estimator with the

bandwidth varying with the sample size; see Newey and West (1994). One can alternatively use the analytic expres-
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sions of γy∗ (k) to obtain an estimator of Vµ. The ARMA-type estimator can be viewed as a GMM-type estimator, so

one can also use GMM standard errors.

Theorem 4.3 covers the simplest CF-ARMA estimator. It is easy to see that the asymptotic distribution of more

general winsorized estimators can be derived in the same way upon using Lemmas 4.1 - 4.2.

5 Forecasting with SVL(p) models

As discussed earlier, SVL(p) models can be written as a linear state-space model without losing any information.

The state-space representation of SVL(p) models is given by

wt+1 =∑p
j=1φ j wt− j+1 + δ̃p zt + σ̃v v̄t+1,

y∗
t = wt +ϵt , wt+1 =

p∑
j=1

φ j wt− j+1 + δ̃p zt + σ̃v v̄t+1 , (5.1)

where δ̃ = δσv , σ̃v =
√(

1−δ2)σv , v̄t ’s are i.i.d. N (0,1), and ϵt ’s are approximated by a normal distribution with

mean 0 and variance π2/2. Using similar notation as that found in Hamilton (1994), this model can also be rewritten

as follows:

y∗
t = H ′ξt +ϵt , ξt+1 = Fξt +σv ut+1 , (5.2)

ut+1 = δηt + (1−δ2)1/2ζt+1,E [ut u′
t ] = E [zt z ′

t ] = E [ν̃t ν̃
′
t ] =Ω1, (5.3)

where H ′ = [1,0, . . . ,0] is a 1×p vector, u and

ξt =



wt

wt−1

wt−2

...

wt−p+1


, F =



φ1 φ2 · · · φp−1 φp

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


, ηt =



zt

0

0
...

0


, ζt =



ν̃t

0

0
...

0


, ut+1 =



νt+1

0

0
...

0


, Ω1 =



1 0 . . . 0

0 0 . . . 0
...

... . . .
...

0 0 . . . 0

 ,

where F and Ω1 are p ×p matrices, and ξt , ut , ηt , ζt are p ×1 vectors. sing (5.2), the Kalman filter can be applied as

follows.

• Initialization:

ξ̂1|0 = E [ξ1] =000(p×1) ,

PPP 1|0 = E [(ξ1 −E [ξ1])(ξ1 −E [ξ1])′] = diag[σ2
ν, . . . ,σ2

ν](p×p) , (5.4)

where PPP 1|0 is the MSE associated with ξ̂1|0.

• Sequential updating:

Kt =PPP t |t−1H

(
H ′PPP t |t−1H + π2

2

)−1

, ξ̂t |t = ξ̂t |t−1 +Kt
(
y∗

t −H ′ξ̂t |t−1
)

,

PPP t |t =PPP t |t−1 −Kt H ′Pt |t−1 . (5.5)
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• In-sample prediction:

ξ̂t+1|t = F ξ̂t |t + δ̃ηt |t , Pt+1|t = F Pt |t F ′2
ν Ω1 , ŷt+1|t = H ′ξ̂t+1|t ,

E [(yt+1 − ŷt+1|t )(yt+1 − ŷt+1|t )′] = H ′PPP t+1|t H + π2

2
, (5.6)

where the last two lines follow from (5.2).

• Out-of-sample h step-ahead forecasting:

ξ̂T+h|T = F h ξ̂T |T +F (h−1)δ̃ηT |T , ŷ∗
T+h|T = H ′ξ̂T+h|T . (5.7)

Hence, the h-step ahead forecast is computed using (5.7) and the simple estimates. Note that here, the leverage

parameter δ appears in prediction equation given in the first line of (5.6) and (5.7). When there is no leverage, this

value will simply be zero and as a result, in sample predictions will also differ. It can also be seen from the first line

in (5.7) that as h becomes larger, the effect from leverage will decay. Hence, we may expect that forecasts from a

model with leverage and that from a model without leverage may not differ too much when forecasting very far out

of sample.

6 Hypothesis testing

In this section, we discuss how to test a hypothesis on an SVL(p) model. First, we discuss asymptotic tests based on

LR-type test statistics. Second, we show how to construct finite-sample tests using the Monte Carlo test technique.

Finally, we show how we can derive implicit standard errors (ISE) for the parameters of our model from simulation-

based confidence intervals.

6.1 Asymptotic tests

The SVL(p) model has three parameters in addition to the p autoregressive parameters (i.e., a total of p +3 param-

eters). These are given by θ = (φ1, . . . , φp , σy , σv , δp )
′
. To test the values of individual parameters, we can consider

t-type statistics of the form:

T (θi ) = (θ̂i −θ1)/SE(θ̂i ) (6.1)

where the standard error SE(θ̂i ) is calculated from the asymptotic covariance matrix given in (4.9). Alternatively, we

can also consider GMM-based LR-type statistics, based on the following moment-based objective function:

MT (θ) := gT (θ)′AT gT (θ) (6.2)
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where θ := (φ1, . . . , φp , σy , σv , δp )
′
, gT (θ) is (p +3)×1 vector of moment functions, defined as

gT (θ) =



µ̂+1.2704− log(σ2
y )

γ̂y∗ (0)+ γ̂y∗ (1)− (π2/2)− (1−φ1)−1
(∑p

j=2

[
φ j (γ̂y∗ ( j −1)+ γ̂y∗ ( j )

]−σ2
v

)
γ̂y∗ (p +1)−φ1γ̂y∗ (p)+·· ·+φp γ̂y∗ (1)

...

γ̂y∗ (2p)−φ1γ̂y∗ (2p −1)+·· ·+φp γ̂y∗ (p)

δ−
p

2πλ̂y (1)

σvσ
2
y

exp
(
− 1

4 γ̃p

)


(6.3)

and AT is an appropriate weighting matrix. MT (θ) is (up to an asymptotically negligible term) a GMM objective

function.

The first moment function follows from first part of (3.6) after taking logarithm and the second moment condition

follows from the Corollary of Autocovariances of SV Process on adding the equations for k = 0 and k = 1 [in (3.3)]:

this yields

γ̂y∗ (0)+ γ̂y∗ (1)− (π2/2)− (1−φ1)−1

(
p∑

j=2

[
φ j (γ̂y∗ ( j −1)+ γ̂y∗ ( j )

]−σ2
v

)
= 0. (6.4)

The preceding p moment conditions prior to the final one are corresponds to (3.3) with k = p +1, . . . ,2p and finally

the fourth equation comes from (3.7) where γ̃p is a function of (φ1, . . . , φp , σv ).

Since the number of moment functions in (6.3) is equal to the number of parameters, we take AT = I(p+3) and

consider the GMM-type objective function

M∗
T (θ) = gT (θ)′gT (θ) . (6.5)

To test hypotheses on θ, the LR-type statistic is the difference between the restricted and unrestricted optimal values

of the objective function:

LRT = T [M∗
T (θ̂0)−M∗

T (θ̂)] (6.6)

where θ̂ is the unrestricted estimator and θ̂0 is the constrained estimator under the null hypothesis. Under standard

regularity conditions, the asymptotic distribution of LRT is χ2
r where r is the number of constraints; see Newey

and West (1987), Newey and McFadden (1994), Dufour et al. (2017). Note however that usual regularity conditions

may not be satisfied when some parameters are not identified or the null hypothesis involves the frontier of the

parameter space.

6.2 Simulation-based finite-sample tests

In this section, we discuss simulation-based inference procedures for SVL(p) models with leverage. The simulation-

based methods are more attainable in the context of this study for two reasons. First, the SVL(p) model is a paramet-

ric model with a finite number of parameters, and we can effortlessly simulate this model. Second, we can simulate

the test statistic of SVL(p) parameters, which is based on a computationally inexpensive estimator. So, using our

proposed computationally simple estimators, one can easily construct more reliable finite-sample inference.

It should be noted that the simulation-based procedure may not be attainable when the estimator is computa-

14



tionally expensive, so that we cannot simulate the test statistic easily.

We now examine the usefulness of our simple estimators in the context of simulation-based inference, i.e., Monte

Carlo test technique. The MCT technique was originally proposed by Dwass (1957) for implementing permutation

tests and did not involve nuisance parameters. This technique was also independently proposed by Barnard (1963);

for a review, see Dufour and Khalaf (2001) and for a general discussion and proofs, see Dufour (2006). It has the

great attraction of providing exact (randomized) tests based on any statistic whose finite-sample distribution may

be intractable but can be simulated. One can replace the unknown or intractable theoretical distribution F (S|θ),

where θ := (φ1, . . . , φp ,σy ,σv ,δp )
′
, by its sample analog based on the statistics S1(θ), . . . ,SN (θ) simulated under the

null hypothesis.

Let us first consider the case of pivotal statistics, i.e. the case where the distribution of the test statistic under the

null hypothesis does not depend on nuisance parameters. We can then proceed as follows to obtain an exact critical

region for testing a null hypothesis H0.

1. Compute the observed test statistic S0 from the available data.

2. Generate by Monte Carlo methods a vector S(N ) = (S1, . . . , SN ) of N i.i.d. replications of S under H0.

3. From the simulated samples, compute the MC p-value p̂N [S] := pN [S0; S(N )] where

pN [x, S(N )] := NGN [x; S(N )]+1

N +1
, (6.7)

GN [x; S(N )] := 1

N

N∑
i=1

I[0,∞)(Si −x) , I[0,∞)(x) =


1 if x ∈ [0, ∞),

0 if x ∉ [0, ∞).
(6.8)

In other words,

pN [S0; S(N )] = NGN [S0; S(N )]+1

N +1
(6.9)

where NGN [S0; S(N )] is the number of simulated values greater than or equal to S0. When S0, S1, . . . , SN are

all distinct [an event with probability one when the vector (S0, S1, . . . , SN )
′

has an absolutely continuous dis-

tribution], R̂N (S0) = N +1−NGN [S0; S(N )] is the rank of S0 in the series S0, S1, . . . , SN .

4. The MC critical region for a test of level α (0 <α< 1) is

p̂N [S] ≤α . (6.10)

If α(N +1) is an integer and the distribution of S is continuous under the null hypothesis, then under H0,

P [p̂N [S] ≤α] =α; (6.11)

see Dufour (2006).

Consider now the case where the distribution of the test statistic depends on nuisance parameters. In other words,

we consider a model {(Ξ,AΞ, Pθ) : θ ∈Ω} where we assume that the distribution of S is determined by P θ̄, where θ̄
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represents the true parameter vector. To deal with this complication, the MC test procedure can be modified as

follows.

1. To test the null hypothesis

H0 : θ̄ ∈Ω0 (6.12)

where ; ̸=Ω0 ⊂Ω, compute the observed test statistic S0 from the available data.

2. For each θ ∈ Ω0, we can generate by Monte Carlo methods a vector S(N ,θ) = [(S1(θ), . . . , SN (θ)] of N i.i.d.

replications of S.

3. The simulated test statistics define the MC p-value function p̂N [S |θ] := pN [S0; S(N ,θ)] where

pN [x; S(N , θ)] := NGN [x; S( N , θ)]+1

N +1
. (6.13)

4. The p-value function p̂N [S |θ] as a function of θ is maximized over the parameter values compatible with Ω0,

i.e., under the null hypothesis, and H0 is rejected if N

sup{p̂N [S |θ] : θ ∈Ω0} ≤α. (6.14)

If the number N of simulated statistics is chosen so that α(N +1) is an integer, then we have under H0:

P θ̄[sup{p̂N [S |θ] : θ ∈Ω0} ≤α] ≤α . (6.15)

Consequently the critical region in (6.14) has level α for testing H0; for a proof, see Dufour (2006).

Because of the maximization in the critical region (6.14), the above test is called a maximized Monte Carlo (MMC)

test. MMC tests provide valid inference under general regularity conditions such as unidentified models or time

series processes involving unit roots. In particular, even though the moment conditions defining the estimator are

derived under the stationarity assumption, this does not question in any way the validity of maximized MC tests,

unlike the parametric bootstrap whose distributional theory is based on strong regularity conditions. Only the power

of MMC tests may be affected. However, the simulated p-value function is not continuous, so standard gradient-

based algorithms and quasi-Newton methods cannot be used to maximize it. But search methods applicable to

non-differentiable functions are applicable, e.g. simulated annealing or Particle Swarm Optimization.

A simplified approximate version of the MMC procedure can alleviate its computational load whenever a consis-

tent point or set estimate of θ is available. To do this, we reformulate the setup in order to allow for an increasing

sample size, i.e., now the test statistic depends on a sample of size T , S = ST .

1. Compute ST 0 the observed test statistic (based on data). By assumption, the distribution of S involves nui-

sance parameters under the null hypothesis H0 in (6.12).

2. We suppose we have a consistent set estimator CT of θ̄ (under H0), i.e. CT satisfies

lim
T→∞

P θ̄[θ̄ ∈CT ] = 1 under H0. (6.16)
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3. For each θ ∈ Ω0, we can generate by Monte Carlo methods a vector S(N ,θ) = [(S1(θ), . . . , SN (θ)] of N i.i.d.

replications of S.

4. he simulated test statistics define the MC p-value function p̂T N [ST |θ] := pT N [ST 0; ST (N ,θ)], where

pT N [x; ST (N , θ)] := NGT N [x; ST (N , θ)]+1

N +1
. (6.17)

5. The p-value function p̂T N [ST |θ] as a function of θ is maximized with respect to θ in CT , and H0 is rejected if

sup{p̂T N [ST |θ] : θ ∈CT } ≤α. (6.18)

If the number of simulated statistics N is chosen so that α(N +1) is an integer, then under H0,

lim
T→∞

P θ̄[sup{p̂T N [ST |θ] : θ ∈CT } ≤α] ≤α . (6.19)

The critical region in (6.18) has level α asymptotically.

In practice, it is easy to find a consistent set estimate of θ̄, whenever a consistent point estimate θ̂T of θ̄ is available

(e.g., a GMM estimator). For instance, any set of the form

CT = {θ ∈Ω0 :
∥∥θ̂T −θ∥∥< ε} (6.20)

with ε> 0 a fixed positive constant independent of T , satisfies (6.16). The consistent set estimate MMC (CSEMMC)

method is especially useful when the distribution of the test statistic is highly sensitive to nuisance parameters.

Here, possible discontinuities in the asymptotic distribution are automatically overcome through a numerical max-

imization over a set which contains the true value of the nuisance parameter with probability one asymptotically

(while there is no guarantee for the point estimate to converge sufficiently fast to overcome the discontinuity). It is

worth noting that there is no need to maximize the p-value function with respect to unidentified parameters un-

der the null hypothesis. Thus, parameters which are unidentified under the null hypothesis can be set to any fixed

value and the maximization be performed only over the remaining identified nuisance parameters. When there are

several nuisance parameters, one can use simulated annealing, an optimization algorithm which does not require

differentiability. Indeed the simulated p-value function is not continuous, so standard gradient based methods can-

not be used to maximize it. For an example where this is done on a VAR model involving a large number of nuisance

parameters, see Dufour and Jouini (2006).

The test based on simulations using a point nuisance parameter estimate is called a local Monte Carlo (LMC)

test. The term local reflects the fact that the underlying MC p-value is based on a specific choice for the nuisance

parameter. If the set CT in (6.18) is reduced to a single point estimate θ̂T , i.e. CT = {θ̂T }, we get a LMC test

p̂T N [ST | θ̂T ] ≤α (6.21)

which can be interpreted as a parametric bootstrap test. Note that no asymptotic argument on the number N of

MC replications is required to obtain this result, a fundamental difference between the latter procedure and the

parametric bootstrap method.
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Even if θ̂T is a consistent estimate of θ̄ (under the null hypothesis), the set CT = {θ̂T } does not generally satisfy

condition (6.16). Additional assumptions are needed to show that the parametric bootstrap procedure yields an

asymptotically valid test. It is computationally less costly but clearly less robust to violations of regularity conditions

than the MMC procedure; for further discussion, see Dufour (2006). Furthermore, the LMC non-rejections are ex-

actly conclusive in the following sense: if p̂N [S | θ̂0] > α, then the exact MMC test is clearly not significant at level

α.

Since Ahsan and Dufour (2021) consider testing individual parameters of a higher order SV(p) model using t-type

statistics briefly described above, we will instead focus on testing for no leverage using the LR-type statistic discussed

previously. Consequently, in the description of the simulation-based finite-sample tests above, we set S0 = LR0

and S(N ,θ) = LR(N ,θ), where LR(N ,θ) = [LR1(θ), . . . ,LRN (θ)]. This testing procedure requires estimating the model

under both the null hypothesis and the alternative hypothesis using a computationally inexpensive estimator; see

Section 3 for computationally simple methods for SVL(p) models. Furthermore, the constrained model utilizes the

consistent point estimate θ̂T . We discuss in more detail the test for no leverage in the next section, which also

includes other simulation-based results.

6.3 Implicit standard error

In this subsection, we show that implicit standard errors (ISE) for the components of a parameter vector θ =
(θ1, . . . , θm)′ can be derived from simulation-based confidence intervals. The asymptotic standard error proposed

in Section 4 can be markedly different and may be quite unreliable in finite samples. To construct a more reliable

standard error, we derive the ISE in the following way.

1. Calculate the (typically restricted) estimate θ̂0 = (θ̂10, . . . , θ̂m0)′ from observed data (Y0).

2. Using θ̂0 as parameter value, generate N i.i.d. replications Y(N ) = (Y1, . . . ,YN ) of Y, by Monte Carlo methods.

3. From Y(N ) = (Y1, . . . ,YN ), compute the corresponding parameter estimates.

4. For each component θi of θ, the confidence interval [Ci (αL), Ci (αH )], with coverage α = αL −αH , is con-

structed using the empirical αi L quantile and the empirical αi H quantile of θ̂i (N ) = (θ̂i 0, θ̂i 1, . . . , θ̂i N ).

5. By analogy with usual Gaussian-based confidence intervals, we set Ci (αL) = θ̂i 0 − z(α/2) σ̂i L and Ci (αH ) =
θ̂i 0 + z(α/2) σ̂i H , where z(α/2) satisfies P [Z ≥ z(α/2)] = α/2 and Z ∼ N(0, 1). This suggests that two numbers

could play the role of “standard errors” here:

σ̂i L = θ̂i 0 −Ci (αL)

z(α/2)
:= I SEi L , σ̂iU = Ci (αH )− θ̂i 0

z(α/2)
:= I SEi H . (6.22)

6. Finally, a conservative ISE for θi is given by min{I SEi L , I SEi H } and a liberal ISE is given by the average or

max{I SEi L , I SEi H }.
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Table 1. Comparison with competing estimators: Bias and RMSE

Bias RMSE

φ σy σv δ φ σy σ δ

True Value
T Estimators RCT NIV 0.95 0.15 1 -0.95 0.95 0.15 1 -0.95

500

Bayes 31929.7 0 -0.0568 0.0830 0.1343 0.6639 0.0617 0.1108 0.1530 0.6653
QML 1028.8 0 -0.0767 0.0176 -0.8469 0.3481 0.2208 0.0810 1.2603 0.4151
CF-ARMA 1.0 61 -0.0142 0.0160 -0.0146 0.1542 0.0396 0.0777 0.2822 0.3861
W-ARMA (J = 10) 1.7 0 -0.0137 0.0155 0.0155 0.1609 0.0268 0.0768 0.1231 0.3880
W-ARMA (J = 100) 2.6 0 -0.0064 0.0155 -0.0466 0.1521 0.0236 0.0768 0.1412 0.3818

2000

Bayes 218068.0 0 -0.0155 0.0346 -0.0151 0.1588 0.1070 0.0573 0.0621 0.1663
QML 1025.5 0 -0.0482 0.0022 -0.4264 0.3273 0.1513 0.0363 0.8612 0.3855
CF-ARMA 1.0 3 -0.0031 0.0030 -0.0238 -0.0313 0.0188 0.0356 0.1678 0.1173
W-ARMA (J = 10) 1.4 0 -0.0038 0.0031 -0.0039 -0.0315 0.0105 0.0356 0.0617 0.1172
W-ARMA (J = 100) 1.8 0 -0.0017 0.0031 -0.0233 -0.0322 0.0106 0.0356 0.0781 0.1158

Notes: We simulate 1000 samples from each model. W-ARMA (J = 10, 100) is the winsorized ARMA estimator based on OLS

and J is the winsorizing parameter. These methods are proposed in Section 3. QML is the quasi-maximum likelihood estimator

of Harvey and Shephard (1996). We used R package stochvol of Kastner (2016) for the Bayesian estimation based on Markov

Chain Monte Carlo methods, where the posteriors are based on 50000 draws of the sampler, after discarding 50000 draws. RCT

stands for the relative computational time w.r.t. the CF-ARMA estimator. The number of inadmissible values (NIV) of φ is also

reported, these are out of 1000. Boldface font highlights the smallest bias and RMSE with no NIV. Boldface font also highlights

the estimator, which has the best overall performance.

7 Simulation study

In this section, we evaluate the properties of our proposed estimators through simulation, focusing specifically on

bias and root mean square error (RMSE). Additionally, we present simulation findings regarding the finite-sample

properties of the LR-type test discussed in Section 6. Moreover, through simulations, we illustrate the significance

of leverage in the context of volatility forecasting.

7.1 Estimation

Now, we assess the statistical performance of our proposed estimators. These estimators include the closed-form

ARMA (CF-ARMA) estimator, as well as two winsorized ARMA (W-ARMA) estimators with no intercept regression,

where J = 10 and J = 100, respectively, for SVL(p) models. Overall, there is no consistent ranking among the different

estimators. However, the Bayesian estimator consistently outperforms other methods in the context of an SV(1)

model; refer to Jacquier et al. (1994) for details. Consequently, we compare our proposed estimators with both QML

[see Harvey and Shephard (1996)] and Bayesian [see Jacquier et al. (1994), Kim et al. (1998)] estimators.

We consider an SVL(1) model with parameter values set at (φ,σy ,σv ,δ) = (0.95,0.15,1,−0.95). These parameter

choices are typical in empirical studies focusing on hourly or daily returns. We conduct simulations with 1000 repli-

cations and present results for two distinct sample sizes (T = 500, 2000).

Bayesian estimates based on Markov Chain Monte Carlo methods are computed using the R package stochvol [see

Kastner (2016)], where the SVL(1) model is reparametrized as yt = exp(wt /2)zt and wt = µw +φ(wt−1 −µw )+σv vt ,

where σy = exp(µw /2). Regarding this reparametrization, see also Kim et al. (1998). In Kastner (2016), independent

priors are considered for µw , φ, σv and δ, where µw ∼N
(
µw,0,σ2

w,0

)
, σv ∈ R+ with ±

√
σ2

v ∼N
(
0,Bσv

)
, φ ∈ (−1,1)
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Table 2. Empirical size of tests for no leverage in SVL(1) model (moderate persistence)

H0: δ= 0 vs. H1: δ ̸= 0

φ= 0.90, σy = 0.10, σv = 0.75 φ= 0.75, σy = 0.10, σv = 1.00

T Asy LMC MMC Asy LMC MMC

500 79.3 12.6 3.3 71.1 9.9 1.5
1000 82.8 12.8 2.0 72.8 10.1 1.4
2000 85.0 11.4 1.8 76.7 11.4 1.0
5000 89.0 10.2 1.0 77.9 10.8 1.4

Notes: Rejection frequencies are obtained using 1000 replications. Monte Carlo tests use N = 99 simulations.

with (φ+1)/2 ∼B
(
α(φ,0),β(φ,0)

)
, and δ ∈ (−1,1) with (δ+1)/2 ∼B

(
α(δ,0),β(δ,0)

)
. Here, B denotes the beta distribution,

and α and β represent positive hyperparameters. The latter are set to: µw,0 = 0, σw,0 = 1, Bσv = 1, α(φ,0) = 5, β(φ,0) =
15.5, α(δ,0) = 75, and β(δ,0) = 1. We apply this Bayesian method on simulated datasets and draw 100000 observations

from the posterior distributions. Bayesian estimators are obtained by averaging the last 50,000 draws.

In our simulations, we find the CF-ARMA estimator of φ occasionally produced values outside the stationary re-

gion. These samples were discarded from calculation. Therefore, the bias and RMSE obtained are thus conditional

on the non-occurrence of inadmissible values. Such problems are practically non-existent with the OLS-based W-

ARMA estimator. Table 1 presents the estimation outcomes, revealing that the W-ARMA estimator consistently ex-

hibits superior performance in bias and RMSE across all parameter values and sample sizes. Specifically, the win-

sorized ARMA estimator with J = 10 consistently outperforms all other estimators, including QML and the Bayesian

estimator, demonstrating significantly lower bias and RMSE. Moreover, winsorized estimators are notably more

time-efficient, as evidenced by the considerable margin of time savings compared to alternative methods. These

findings offer valuable insights into the relative performance of various estimation techniques for SVL(1) models.

7.2 Testing

Here, we are interested in testing for no leverage and hence consider the following hypothesis

H0 : δ= 0 v s H1 : δ ̸= 0 (7.1)

To test the hypothesis of no leverage, we utilize the vector of moment conditions given in equation (6.3) to derive

gT (θ1), which remains consistent with the unconstrained model. We then simply set δ = 0 in the final moment

condition to derive gT (θ0). It is worth noting that all moment conditions, except the last one, are independent of δ

and remain identical under both the null and alternative hypotheses.

The unrestricted and restricted objective functions are denoted by M T (θ1) = gT (θ1)′gT (θ1) and

M T (θ0) = gT (θ0)′gT (θ0) respectively. Here, the complete parameter vector under H1 is represented by

θ = (φ1, . . . ,φp ,σy ,σv ,δ)′, while under H0, the vector of nuisance parameters reduces to θ̃ = (φ1, . . . ,φp ,σy ,σv )′.

Hence, within the framework of LMC tests, the values ˆ̃θ0 = (φ̂
0
1, . . . , φ̂

0
p , σ̂0

y , σ̂0
v )′, obtained from estimating the

restricted model using observed data, are used to simulate the null distribution of the test statistic.
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Table 3. Empirical power of tests for no leverage in SVL(1) model (moderate persistence)

H0: δ= 0 vs. H1: δ ̸= 0

δ=−0.90 δ=−0.70 δ= 0.70 δ= 0.90
T Asy LMC MMC Asy LMC MMC Asy LMC MMC Asy LMC MMC

φ= 0.90, σy = 0.10, σv = 0.75

500 61.9 65.5 20.9 42.3 45.0 12.5 42.5 43.9 11.4 63.8 66.6 19.5

1000 84.9 81.9 36.8 59.8 57.1 19.7 61.9 58.2 18.7 85.6 82.7 35.4

2000 99.1 99.3 58.7 85.6 87.3 31.7 85.6 87.1 31.9 98.7 99.0 60.3

5000 100.0 100.0 94.9 99.8 99.9 70.6 99.9 99.9 68.4 100.0 100.0 93.9

φ= 0.75, σy = 0.10, σv = 1.00

500 96.2 95.9 62.3 80.8 80.2 35.8 80.8 80.3 35.2 96.5 96.4 63.6

1000 100.0 100.0 93.3 99.0 98.7 70.5 98.8 98.5 72.8 100.0 100.0 92.9

2000 100.0 100.0 99.7 100.0 100.0 94.5 100.0 100.0 94.4 100.0 100.0 99.9

5000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Notes: Rejection frequencies are obtained using 1000 replications. Monte Carlo tests use N = 99 simulations. Asymmetric test

results are level-corrected using N = 10000 and true parameters (i.e., infeasible test in practice as it requires knowing the true

DGP). LMC test results are level-corrected using N = 1,000 and true parameters.

Table 4. Empirical size of tests for no leverage in SVL(1) model (high persistence)

H0: δ= 0 vs. H1: δ ̸= 0

φ= 0.99, σy = 0.10, σv = 0.25 φ= 0.95, σy = 0.10, σv = 0.50

T Asy LMC MMC Asy LMC MMC

500 81.8 19.5 5.3 79.7 13.6 2.5
1000 88.7 17.1 5.2 83.3 13.4 2.3
2000 92.1 16.8 5.4 87.9 11.4 1.6
5000 93.2 13.3 4.8 91.2 10.9 1.4

Notes: Rejection frequencies are obtained using 1000 replications. Monte Carlo tests use N = 99 simulations.

Table 5. Empirical power of tests for no leverage in SVL(1) model (high persistence)

H0: δ= 0 vs. H1: δ ̸= 0
δ=−0.90 δ=−0.70 δ= 0.70 δ= 0.90

T Asy LMC MMC Asy LMC MMC Asy LMC MMC Asy LMC MMC
φ= 0.99, σy = 0.10, σv = 0.25

500 23.4 24.1 8.4 19.4 19.8 7.9 22.8 24.1 6.2 25.6 27.0 8.1

1000 34.1 33.4 12.4 26.6 26.4 10.4 23.2 23.1 8.6 29.7 29.6 9.2

2000 43.7 42.7 16.5 30.2 28.7 12.0 30.7 29.7 12.4 44.3 42.4 17.9

5000 68.8 67.2 31.7 46.9 46.1 20.0 44.5 43.8 18.1 66.0 65.0 27.5

φ= 0.95, σy = 0.10, σv = 0.50
500 42.9 40.6 12.8 29.6 27.9 8.0 30.9 28.6 8.1 44.9 41.5 13.2

1000 67.9 67.1 26.2 46.3 45.2 14.6 44.4 43.4 13.0 67.1 65.8 24.1

2000 87.6 87.3 40.1 62.7 62.3 20.3 65.7 65.6 22.7 89.8 89.4 43.9

5000 100.0 100.0 82.3 96.4 96.4 48.0 96.0 96.0 43.7 100.0 100.0 79.9

Notes: Rejection frequencies are obtained using 1000 replications. Monte Carlo tests use N = 99 simulations. Asymmetric test

results are level-corrected using N = 10000 and true parameters (i.e., infeasible test in practice as it requires knowing the true

DGP). LMC test results are level-corrected using N = 1,000 and true parameters.
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Table 6. Empirical size of tests for no leverage in SVL(2) model

H0: δ= 0 vs. H1: δ ̸= 0

φ1 = 0.05, φ2 = 0.85, σy = 1.00, σv = 1.00 φ1 = 0.05, φ2 = 0.70, σy = 1.00, σv = 1.00

T Asy LMC MMC Asy LMC MMC

500 57.9 13.8 6.7 53.1 8.0 2.7
1000 62.8 10.7 3.9 54.3 6.3 1.7
2000 68.0 8.8 2.4 55.8 7.1 1.5
5000 77.0 8.4 1.9 57.1 6.8 2.5

Notes: Rejection frequencies are obtained using 1000 replications. Monte Carlo tests use N = 99 simulations.

Table 7. Empirical power of tests for no leverage in SVL(2) model

H0: δ= 0 vs. H1: δ ̸= 0
δ=−0.90 δ=−0.70 δ= 0.70 δ= 0.90

T Asy LMC MMC Asy LMC MMC Asy LMC MMC Asy LMC MMC
φ1 = 0.05, φ2 = 0.85, σy = 1.00, σv = 1.00

500 62.4 67.5 47.0 49.4 56.9 34.1 50.0 55.2 34.3 62.1 65.8 45.2

1000 74.3 75.3 52.8 60.1 63.0 39.5 61.5 65.8 40.9 75.5 76.2 53.8

2000 90.3 88.1 67.4 80.9 80.3 52.5 80.9 80.2 49.9 91.0 87.4 66.3

5000 99.8 98.7 88.6 99.1 96.2 77.4 99.4 95.9 78.8 100.0 98.8 87.8

φ1 = 0.05, φ2 = 0.70, σy = 1.00, σv = 1.00
500 97.7 96.7 87.7 90.5 92.8 74.6 90.9 92.3 72.0 97.6 96.5 88.8

1000 100.0 99.2 96.6 99.8 98.7 92.7 99.7 98.7 92.5 100.0 99.4 96.7

2000 100.0 99.9 99.4 100.0 99.9 98.4 100.0 99.9 97.8 100.0 99.9 98.9

5000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0

Notes: Rejection frequencies are obtained using 1000 replications. Monte Carlo test uses N = 99 simulations. Asymmetric test

results are level-corrected using N = 10000 and true parameters (i.e., infeasible test in practice as it requires knowing the true

DGP). LMC test results are level-corrected using N = 1,000 and true parameters.

When considering MMC tests, we consider the consistent set define by

C (1)
T (δ0) =

{
θ̃0 ∈ Ω̃0 :

∥∥∥φk − φ̂0
k

∥∥∥≤ 0.01, |φk | ≤ 0.999,
∥∥∥σy − σ̂0

y

∥∥∥≤ 0.05, |σy | ≥ 0.01,
∥∥σv − σ̂0

v

∥∥≤ 0.05, |σv | ≥ 0.01
}

(7.2)

for SVL(1) models. For SVL(2) models, we will consider a larger set which includes more values of the variance

parameters. This set is given by

C (2)
T (δ0) =

{
θ̃0 ∈ Ω̃0 :

∥∥∥φk − φ̂0
k

∥∥∥≤ 0.01, |φk | ≤ 0.999,
∥∥∥σy − σ̂0

y

∥∥∥≤ 0.10, |σy | ≥ 0.01,
∥∥σv − σ̂0

v

∥∥≤ 0.10, |σv | ≥ 0.01
}

. (7.3)

We report the rejection frequency of the LMC and MMC test procedures when testing for no leverage. For com-

parison, we also provide results for the asymptotic test where the critical value is obtained from a χ2
(1) distribution

rather than from the simulated null distribution. As we show, the asymptotic test performs very poorly in this setting

as size is not controlled. All rejection frequencies are obtained using 1,000 replications. Rejection frequencies when

the alternative hypothesis is true (i.e., power study) are obtained using critical values that are locally level-corrected.

Note that we use the term “locally level-corrected” instead of “size-corrected” because a true size correction would

require one to ensure that the probability of rejecting the null hypothesis under all distributions compatible with

null hypothesis (i.e., for all values of the nuisance parameters) be less than or equal to the level α. However, finding

the appropriate size-corrected critical values requires a numerical search that was not performed in the experiments.

The level-corrected critical value is obtained by simulating the test statistic under the null hypothesis with 10,000

replications for asymptotic tests and 1,000 replications for LMC tests. It is worth noting that, as a result, the power

results for the asymptotic test shown below are infeasible in practice as they require knowing the true DGP. These
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are only provided for comparison. Although the LMC test power results are also level corrected, as is shown, the

degree of over-rejection is not as severe as is the case for the asymptotic test. In addition, we provide results in

the appendix where the power of the LMC test is not level-corrected and there is little difference for the examples

considered here. On the other hand, the MMC test does not involve the use of level-corrected critical values as it

already involves a search over values consistent with the null hypothesis. Further, this test does not display any over-

rejection under the null hypothesis. The maximization of MMC tests was done using a particle swarm algorithm and

calculations were performed with the R system [see MaxMC package Dufour and Neves (2018); Bendtsen. (2022)].

For all scenarios, we examine the performance of each test procedure across various sample sizes: T = 500, 1,000,

2,000, 5,000. Our findings can be summarized as follows.

First, we consider testing for leverage in an SVL(1) model. Table 2 reports the empirical size of the asymp-

totic test, LMC test, and MMC test for no leverage across four different sample sizes and two distinct DGPs.

These DGPs possess moderate persistence in the volatility process, characterized by θ = (0.90,0.10,0.75,0.00) and

θ = (0.75,0.10,1.00,0.00), respectively, consistent with the null hypothesis. As observed, the asymptotic test exhibits

a significant degree of over-rejection, failing to control the test size (α = 5%). Conversely, the simulation-based

Monte Carlo procedures outlined here perform well in comparison, achieving a rejection frequency much closer

to the nominal test level. However, we note that the LMC procedure still exhibits some over-rejection, particularly

evident in the case where φ = 0.90, although showing a decreasing trend as the sample size increases. These find-

ings also indicate that as persistence increases from φ= 0.75 to φ= 0.90, both the asymptotic test and the LMC test

demonstrate higher levels of over-rejection. On the contrary, this analysis highlights the effectiveness of the MMC

procedure, which successfully controls the test size by maintaining a rejection frequency less than or equal to the

nominal level, as prescribed by theory.

Second, to showcase the power of these test procedures we considering DGPs with the same values for φ,

σy , and σv , but consider different values of δ that are consistent with the alternative hypothesis. Table 3 con-

tains the rejections frequencies for the two DGPs (moderate persistence) and four different sample sizes when

δ = −0.90,−0.70,0.70,0.90. Although it is commonly the case when considering financial time series that the lever-

age parameter is negative, the last six columns include test results when leverage is positive to show that the power

of these tests appear to be symmetrical, in that they are very comparable to the rejection frequencies when leverage

is negative values of the same magnitude. We also consider more values of δ and summarize all these results graph-

ically in Appendix Figures A2 and A3. When considering these results, it is important to remember that the rejection

frequencies for the asymptotic test and the LMC test are obtained using critical values that are level-corrected as

described above. These are used instead of the conventional χ2
1 critical values so that they may be more comparable

since, as seen from Table 2, using the conventional critical values would likely lead to suggest there is higher degree

of power that is actually due to the over-rejection of these test procedures. Hence, the power results for the asymp-

totic test shown here are infeasible in practice as we do not typically know the true DGP parameter values under the

null hypothesis. However, Appendix Table A1 shows the same results except that the LMC test rejection frequencies

are no longer level-corrected and here we see that there is not a large difference in terms of power, suggesting that

the LMC test still performs quite well in terms of power. The Appendix also provides similar figures as described
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above when the LMC test is not level corrected. Those results are summarized graphically in Appendix Figures A4

and A5. As expected, the power of all test procedures increase as the sample size increases. These results also show

that when persistence increases from φ= 0.75 to φ= 0.90, the power of all test procedures decreases slightly. This is

especially the case for smaller sample sizes but less prevalent for larger samples sizes.

Third, we consider two more DGPs where we increase the degree of persistence. Specifically, we consider a φ =
0.95 and φ = 0.99. When considering these DGPs under the null hypothesis, such that δ = 0, we find that there is

a higher degree of over-rejection from both the asymptotic test and the LMC test. However, for the LMC test, the

over-rejection decreases as the sample size increases. This can be seen from Table 4. Here, we see once again the

benefit of the MMC test procedure. The MMC procedure is able to control the size of the test even for the more

difficult cases where persistence is very high (e.g., φ= 0.99) and even does so when considering small sample sizes.

Fourth, Table 5 shows that when persistence is much higher the power of the test is also affected. While the power

remains relatively high when φ= 0.95, it decreases notably when φ= 0.99, such that the power of the LMC test, for

instance, is not as substantial. Nevertheless, the power of the LMC test is comparable to the infeasible asymptotic

test, which suggest it still performs quite well. As can be seen, the power still increases with the sample size when

persistence is high as expected and so we should expect that for cases where persistence is very high, a larger sample

size can achieve even better power results. As before, we also provide a table where the LMC test is not locally level-

corrected; see Appendix Table A2. Similarly, Appendix Figures A6-A9 summarize results for more values of δ for both

DGPs considered here and for the case where the LMC test is locally level-corrected and when it is not.

Fifth, we test the hypothesis of no leverage when the DGP includes an additional lag (i.e., when p = 2). Specifically,

we consider DGPs that are similar to the ones considered for the SVL(1) case in the sense that the persistence is

similar i.e., the roots are close to the unit root. Table 6 summarizes the results of the test procedures under the null

hypothesis. The results for the asymptotic and LMC tests are similar to when we considered an SVL(1) model in that

the the asymptotic test displays a very high degree of over-rejection, while the LMC test displays a small degree of

over-rejection that appears to decrease for larger sample sizes and is especially smaller for the second DGP where

φ1 = 0.05 and φ2 = 0.70. As previously mentioned, here we expand the consistent set used for the MMC test slightly

by considering a wider space for the variance parameters. As before, we find that the MMC test performs remarkably

well in controlling the size of the test, highlighting once more the benefit of this test procedure, which is feasible for

the computationally simple moment-based estimation procedure proposed here.

Finally, Table 7 show results when the test procedures are applied to an SVL(2) model that is consistent with

the alternative hypothesis. Specifically, we again report results when δ=−0.90,−0.70,0.70,0.90 but results for more

values of δ are provided in Appendix Figures A10-A13. The results shown here are quite similar to the SVL(1) case,

though the MMC procedure appears to have even higher power for smaller sample sizes. Overall, we find that the

performance of the MC simulation-based tests are favourable under various settings.

7.3 Forecasting

When forecasting, we work with the log of the squared returns, which according to (2.9) and (5.7) is given by

log(ŷ2
T+h|T ) = µ+ H ′ξ̂T+h|T . Table 8 reports the ratio of the MSESV and MSESV L where the subscript SV and SV L
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Table 8. MSE ratios and DM test for forecasting volatility in SV models with and without leverage.

SV(1) vs. SVL(1) SV(2) vs. SVL(2)
h = 1 h = 5 h = 10 h = 1 h = 5 h = 10

δ MSE ratio DM Stat. MSE ratio DM Stat. MSE ratio DM Stat. MSE ratio DM Stat. MSE ratio DM Stat. MSE ratio DM Stat.
φ= 0.90, σy = 0.10, σv = 0.75 φ1 = 0.05, φ2 = 0.85, σy = 1.00, σv = 1.00

-0.9 1.14 7.86*** 1.08 8.69*** 1.05 8.75*** 1.14 7.87*** 1.03 7.12*** 1.01 7.07***

-0.7 1.06 3.77*** 1.04 5.71*** 1.03 5.70*** 1.08 6.59*** 1.02 5.43*** 1.01 5.50***

-0.5 1.02 1.75* 1.02 3.64*** 1.01 3.57*** 1.04 4.86*** 1.01 3.94*** 1.00 4.00***

0.5 1.02 2.67*** 1.01 3.96*** 1.01 4.54*** 1.04 5.08*** 1.01 4.11*** 1.00 4.37***

0.7 1.07 5.43*** 1.04 6.91*** 1.03 7.27*** 1.08 6.59*** 1.01 5.96*** 1.01 6.21***

0.9 1.15 7.94*** 1.09 9.13*** 1.05 9.11*** 1.14 7.97*** 1.03 7.86*** 1.01 7.95***

φ= 0.75, σy = 0.10, σv = 1.00 φ1 = 0.05, φ2 = 0.70, σy = 1.00, σv = 1.00
-0.9 1.19 8.13*** 1.06 8.56*** 1.03 8.57*** 1.17 7.68*** 1.03 7.78*** 1.01 7.78***

-0.7 1.10 5.91*** 1.04 7.32*** 1.02 7.35*** 1.09 5.94*** 1.02 6.10*** 1.01 6.09***

-0.5 1.04 3.42*** 1.02 5.51*** 1.01 5.54*** 1.04 3.73*** 1.01 3.98*** 1.00 3.97***

0.5 1.03 1.92* 1.01 1.82* 1.00 1.99** 1.04 4.37*** 1.01 4.39*** 1.00 4.44***

0.7 1.08 4.65*** 1.03 5.62*** 1.02 5.75*** 1.09 6.43*** 1.02 6.44*** 1.01 6.45***

0.9 1.19 7.92*** 1.06 8.69*** 1.03 8.70*** 1.18 7.98*** 1.03 8.12*** 1.01 8.12***

Notes: We simulate a process with T = 2,010 observations, estimate the model using the first Test = 2,000, and forecast the last

10 observations. This process is repeated B = 3,000 times. The MSE ratio is computed by using the MSE of the SV(p) model in

the numerator and the MSE of the SVL(p) model in the denominator, so that a value greater than 1 suggests that the model with

leverage provides a better forecast. The reported values represent the Mean Squared Error (MSE) ratio for each model at different

horizons: h = 1 (one day), h = 5 (one week), and h = 10 (two weeks). The DM statistic is computed as in equation (7.6). The

significance level of the DM statistic is indicated using (∗) for 10% significance level, (∗∗) for 5% significance level, and (∗∗∗) for

1% significance level.

denotes the MSE from the model with no leverage (i.e., δ= 0) and the MSE from the model with leverage (i.e., δ ̸= 0)

respectively. Specifically, the MSE of each model is computed as,

MSEm = 1

B

B∑
i=1

(
h∑

j=1

[
log(y2

t+ j )− log(ŷ2
m,t+ j |t )

]2
)

, (7.4)

where m = {SV ,SV L} and B is the number of simulations. In practice, we would set B to be the number of

out-of-sample observations after t as in the empirical section below. The ratio is then computed as MSE ratio

= MSESV /MSESV L and hence, a value greater than 1 suggests the model with leverage performs better. This ratio

is provided for values of δ=−0.9,−0.7,−0.5,0.5,0.7,0.9 along different rows and horizons h = 1,5,10 along different

columns. Specifically, we consider some of the same DGPs as in the hypothesis test for no leverage study presented

above. Additionally, we use the DM test of Diebold and Mariano (2002) as a means to determine the statistical sig-

nificance of the difference in the forecast performance of a model with leverage and a model with no leverage. That

is, we compute

di =
h∑

j=1

[
log(y2

t+ j )− log(ŷ2
SV ,t+ j |t )

]2 −
h∑

j=1

[
log(y2

t+ j )− log(ŷ2
SV L,t+ j |t )

]2
(7.5)

where as before, i denotes the number of the simulations. From here, the DM statistic is computed as

DM = d̄√
(γd (0)+2

∑B 1/3

k=1 γd (k))/B
(7.6)

where d̄ = 1
B

∑B
i=1 di and γd (k) is the sample auto-covariance of di at lag k. As described in Diebold and Mariano

(2002) this test statistic has a standard normal distribution under the null hypothesis of no statistical difference is
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Table 9. Empirical W-ARMA estimates of SVL(p) models

SVL(1) SVL(2) SVL(3)
φ̂ σ̂y σ̂ν δ̂ φ̂1 φ̂2 σ̂y σ̂ν δ̂ φ̂1 φ̂2 φ̂3 σ̂y σ̂ν δ̂

S&P 500
est. 0.972 0.850 0.294 -0.774 0.427 0.549 0.850 0.719 -0.024 0.141 0.355 0.477 0.850 0.639 -0.151

SE (0.001) (0.055) (0.011) (0.115) (0.033) (0.031) (0.131) (0.056) (0.498) (0.006) (0.086) (0.009) (0.109) (0.075) (0.171)

DOWJ
est. 0.970 0.811 0.294 -0.749 0.513 0.459 0.811 0.689 -0.035 0.300 0.235 0.434 0.811 0.628 -0.154

SE (0.001) (0.049) (0.011) (0.128) (0.074) (0.072) (0.111) (0.061) (0.492) (0.076) (0.084) (0.027) (0.093) (0.072) (0.193)

NASDQ
est. 0.985 1.135 0.209 -0.998 0.424 0.563 1.135 0.621 -0.008 0.234 0.448 0.302 1.135 0.598 -0.046

SE (0.001) (0.099) (0.005) (0.001) (0.031) (0.031) (0.25) (0.070) (0.506) (0.044) (0.047) (0.080) (0.217) (0.076) (0.487)

Notes: Sample for each index is from 2000-Jan-04 to 2023-May-31 (T = 5,889). Estimates are obtained using W-ARMA estimator

given in (3.24) with J = 250. Standard errors of parameters are obtained using the implicit standard errors procedure described

in Section 6.3.

Table 10. Asymptotic and finite-sample tests for the presence of leverage in SVL(p) models

H0: δ= 0 vs. H1: δ ̸= 0
SVL(1) SVL(2) SVL(3)

Asymptotic LMC MMC Asymptotic LMC MMC Asymptotic LMC MMC
S&P 500 0.00 0.00 0.01 0.07 0.83 0.95 0.00 0.32 0.70

Dow Jones 0.00 0.00 0.01 0.01 0.84 0.94 0.00 0.37 0.46

NASDAQ 0.00 0.00 0.01 0.56 0.87 0.92 0.00 0.70 0.89

Notes: Sample for each index is from 2000-Jan-04 to 2023-May-31 (T = 5,889). The reported values are p-values for test procedure

when testing for leverage (i.e. H0 : δ = 0 vs. H1 : δ ̸= 0). When estimating the constrained and unconstrained models we used

W-ARMA estimator given in (3.24) with J = 250. We use N = 999 Monte Carlo simulations to simulate the null distribution for

LMC and MMC tests. Table A5 extends this table by considering N = 99 and N = 299 for both the LMC and MMC test procedures.

the forecast error. That is, we test the null hypothesis H0 : DM = 0 against an alternative hypothesis H1 : DM ̸= 0.

From Table 8, we find that when leverage is present, the forecasts of the model with leverage outperforms the

forecasts of the model without leverage. This is seen as the MSE ratio is above 1. Specifically, as we should expect,

we find that when δ is higher, the ratio becomes larger indicating the performance difference is greater. This is also

reflected in the DM statistic, which is larger for larger values of δ. As previously discussed, we see from the first line

of equation (5.7) that δ shows up in the forecast but is multiplied by F (h−1) and so for stable models, as h increases,

the effect of δ will decay. This feature can be seen in Table 8 since we can see the MSE ratio decrease as h increases.

However, we still find that the difference in forecasting performance is still statistically significant and in favour of

the model with leverage even at horizon h = 10 (e.g., two weeks ahead if working with daily data).

8 Application to stock price indices

In this section, we demonstrate the performance of the SVL(p) model proposed in this paper when applied to three

financial indices. Namely, we consider the Standard and Poor’s 500 Composite Price Index (S&P500), the Dow Jones

Industrial Average Price Index (DOWJ), and the Nasdaq Composite Price Index (NASDQ). SVL(p) models are fitted to

daily demeaned returns of these indices. Specifically, the raw series pt are converted to returns by the transforma-

tion rt = 100[log(pt )−log(pt−1)] and then the returns are demeaned by yt = rt −µ̂r , where µ̂r is the sample average of
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Table 11. Empirical volatility forecasting performance with competing conditional volatility models

S&P 500 Dow Jones NASDAQ
Models h = 1 h = 5 h = 10 h = 1 h = 5 h = 10 h = 1 h = 5 h = 10
ARCH(1) 13.629 65.351 128.294 11.982 60.489 121.549 14.48 68.309 132.324

ARCH(2) 9.514 50.653 105.372 9.482 50.428 104.794 8.981 47.185 97.015

ARCH(3) 8.936 47.558 100.909 8.882 47.319 100.274 8.690 45.376 94.246

GARCH(1,1) 8.297 42.552 87.398 8.279 42.450 87.042 7.918 40.114 81.540

GARCH(2,2) 8.259 42.378 87.181 8.260 42.300 86.859 7.884 39.988 81.390

GARCH(3,3) 8.251 42.326 87.128 8.260 42.288 86.883 7.889 39.989 81.404

EGARCH(1,1) 7.971 40.683 82.891 8.006 40.792 83.014 7.674 38.927 78.895

EGARCH(2,2) 7.878 40.272 82.137 7.941 40.486 82.466 8.109 40.711 82.047

EGARCH(3,3) 7.792 39.916 81.499 11.809 59.887 110.934 9.855 53.878 161.959

GJR(1,1) 8.059 41.551 85.553 8.051 41.430 85.102 7.723 39.313 79.968

GJR(2,2) 8.034 41.432 85.409 8.030 41.267 84.842 7.702 39.206 79.821

GJR(3,3) 8.024 41.372 85.335 8.036 41.280 84.912 7.690 39.189 79.825

SV(1) 6.261 31.721 64.657 6.191 31.379 63.867 6.088 30.669 62.200

SV(2) 6.257 32.863 67.359 6.183 32.433 66.462 6.027 31.370 63.962

SV(3) 6.193 33.077 67.616 6.092 32.704 66.798 5.987 31.607 64.239

SVL(1) 6.148 31.526 64.508 6.102 31.128 63.579 5.949 30.323 61.786

SVL(2) 6.174 32.690 67.183 6.118 32.262 66.283 5.927 31.186 63.775

SVL(3) 6.097 32.915 67.451 6.007 32.533 66.623 5.875 31.432 64.063

Notes: The reported values represent the Mean Squared Error (MSE) for each model at different horizons: h = 1 (one day), h = 5

(one week), and h = 10 (two weeks). The values in bold indicate that the model is part of the Model Confidence Set (MCS) for

that horizon and that specific index. The MCS is determined using a 5% significance level. The values in bold red indicate the

models in the MCS with the lowest MSE. Sample for each index is from 2000-Jan-04 to 2023-May-31 (T = 5,889). Estimates are

obtained using W-ARMA estimator given in (3.24) with J = 250. Out-of-sample forecasting is performed using a rolling window

scheme of size Test = 1,000, where the first estimation window ends at observation 1,000, and the last estimation window starts

at observation 4,880 but ends at observation 5,879.

returns. We consider a sample from January 4, 2000 to May 31, 2023 (i.e., T = 5,889) so that all indices are available

for the same time period and so that we capture various volatile periods.

The Appendix Figure A14 shows plots of yt for each index. Additionally, Appendix Table A4 reports summary

statistics of the daily residual returns (yt as well as summery statistics for y2
t and y∗

t , where y∗
t = log(y2

t )−µ as in

equation (2.9), for each financial index. The skewness and kurtosis of yt and y2
t for each index show some evidence

of non-normal distribution, while the distribution of log-transformed residual returns is closer to normal. These

findings are consistent with most empirical studies.

Table 9 shows the parameter estimates of the SVL(p) models (where p = 1, 2, 3) using our W-ARMA estimator. For

all estimates in this section we use (3.24) with J = 250 with equal weights to estimate φp and the other expressions

in equations (3.15) and (3.16) to obtain estimates of the other parameters. This table also reports implicit standard

errors of each parameter, which are obtained using the procedure described in section 6.3. Our results show some

persistence in the volatility process for each index during the sample considered here. We also find that leverage

(i.e., δ) is very high when using an SVL(1) model, but very small and in many cases close to 0 when considering an

SVL(2) or SVL(3) model.

As in the simulation section above, we examine a test for no leverage in SVL(p) models, specifically testing H0 :

δ= 0 against H1 : δ ̸= 0, using the moment-based LR test described in Section 6.1. This entails utilizing the moments

provided in (6.3) for both the constrained and unconstrained models to calculate the LR statistic.

The LR test results are reported in Table 10, where we consider the asymptotic test, the LMC test, and the MMC
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test procedures. The asymptotic test always appears to reject the null hypothesis of no leverage at a significance

level of 10%, even for the SVL(2) and SVL(3) case where δ was shown to be very small in Table 9, with the only

exception being when the SVL(2) model is applied to NASDAQ. This is likely due to the over-rejection we found in

the simulation study of section 7.2. On the other hand, the LMC test results appear to be more in line with what

we should expect given the values of δ being closer to 0 when using an SVL(2) or SVL(3) model. That is, we reject

the null hypothesis of no leverage when considering an SVL(1) model but fail to reject the null hypothesis when

considering an SVL(2) or SVL(3) model.

For the MMC test, we use the same confidence set as in (7.2) when searching the nuisance parameter space for

a maximum p-value. The reason for choosing this set and not the wider set given in (7.3) is because we see that

with the LMC test, only the SVL(1) model appears to reject the null hypothesis of no leverage. As a result we find it

suitable to use the same confidence set as in the SVL(1) case shown in the simulation section where we saw this set

was large enough to allow the MMC test procedure to control size. Whereas with the SVL(2) and SVL(3) models, the

LMC procedure already fails to reject the null hypothesis and so it is not necessary to search a very wide space.

Table 11 provides results of a forecast study. Specifically, we consider various different GARCH-type, SV-type and

SVL-type models along different rows and report their MSE when forecasting the log squared residual returns of

each index at horizon h = 1, 5, and 10. In order to compute the MSE , we use a fixed estimation window of Test =
1,000 and then roll the estimation window forward, while always forecasting the next h = 1, . . . ,10 periods. Since

we have a total sample size of T = 5,889, this results in B = 4,880 forecast errors for each horizon. The reason for

keeping a short estimation window is based on the premise that very distant observations may contain little useful

information for use in forecasting in more recent periods as discussed in Kambouroudis and McMillan (2015). The

squared forecast errors are also used to perform the Model Confidence Set (MCS) test of Hansen et al. (2011) using

a significance level of 5% in order to determine the set of models that outperform the rest in terms of forecasting

performance. When using the MCS test we are testing the following hypothesis

H0 :µi = 0 for all i ∈M and H1 :µi ̸= 0 for some i ∈M (8.1)

where µi = E [di ], which is computed as d̄i = m−1 ∑
j∈M d̄i , j with i , j indexing two different models and M is the

set of all models being considered here. In this case, the test statistic of interest is MC STmax,M = max
i∈M

ti where ti =
d̄ip
ˆVar(d̄i )

and where ˆVar(d̄i ) is a bootstrap estimate of Var(d̄i ). That is, we consider the Tmax version of the test

discussed in Hansen et al. (2011). This test is applied using R package ‘MCS’ (see Bernardi (2017)). Our results show

that the SVL(1) model is the only model that is always included in the MCS at all horizons and for all indices. From

Table 11 we can also see that the SV(1), SV(3) and SVL(2) and SVL(3) model appear in the MCS for specific horizons

for all three indices. When considering Dow Jones and NASDAQ data, the SV(2) model also appears in the MCS for

specific horizons. Further, for these latter two indices, some EGARCH models also appear in the MCS. The MCS

even includes some GARCH models when considering NASDAQ data.

We also consider a larger estimation window Test = 4,880 and for which the results are shown in Appendix Table

A6. As before, we still find that the SVL(1) model is always part of the MCS but in this case only the SV(1), SV(3) and

SVL(3) also appear in the MCS.
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9 Conclusion

Despite their conceptual appeal, SVL models pose challenges for estimation and inference due to the presence of

latent variables, especially when extending beyond the SVL(1) model. To address this, we propose a novel moment-

based simple CF-ARMA estimator for SVL(p) models. This estimator offers analytical tractability and computational

efficiency, thereby overcoming limitations associated with existing methods. Moreover, we introduce enhancements

such as restricted and winsorized versions of the CF-ARMA estimator, which further improve the stability and ac-

curacy of the estimator, particularly in the presence of outliers or small samples. We demonstrate that these simple

estimators are especially convenient for use in simulation-based inference techniques, such as Bootstrap or Monte

Carlo tests.

Our study encompasses several simulation experiments and empirical applications. Utilizing the W-ARMA-OLS

estimator, we showcase the advantages of LMC and MMC methods in controlling the size and power of LR-type

tests. Additionally, we explore the statistical properties and forecasting performance of the proposed estimators,

highlighting the significance of leverage in volatility forecasting. Importantly, our empirical findings emphasize the

superiority of SVL(p) models over competing conditional volatility models, such as GARCH and SV(p), in terms of

forecast accuracy.

In summary, our research contributes to the advancement of estimation and inference techniques for SVL(p)

models, providing valuable insights into understanding and modeling volatility dynamics in financial markets.

Through empirical applications and simulation studies, we offer practitioners and researchers practical tools and

methodologies that are beneficial for risk management, option pricing, asset allocation, and volatility forecasting.
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A Proofs

PROOF OF PROPOSITION 3.1 From (2.10) - (2.11), we have

φ(B)wt = vt , y∗
t = wt +ϵt (A.1)

where φ(B) = (1−φ1B −·· ·−φp B p ) and vt = δp zt−1 + (1−δp )1/2 v̄t . Furthermore, vt ’s and ϵt ’s are uncorrelated. This

result follows from

Cov(vt ,ϵt ) = E[vt (h(zt )−E[ϵt ])
]= E[vt (h(zt )

]= E[E(vt |zt )h(zt )
]

, (A.2)

where h(zt ) = log(z2
t ). Since E

[
E(vt |zt )h(zt )

]
is an odd function of zt , and the density of zt [ f (zt )] is symmetric, its

expected value is zero. Thus, Cov(vt ,ϵt ) = 0.

Now applying φ(B) to both sides of (2.11) yields

φ(B)y∗
t =φ(B)wt +φ(B)ϵt = vt +φ(B)ϵt . (A.3)

The right hand side of (A.3) is clearly a covariance stationary process. By the Wold decomposition theorem it must

have a moving average representation. Since the autocovariance function cuts off for lags k > p it must be an M A(p)

process, say θ(B)ηt = (1−θ1B−·· ·−θp B p )ηt . Hence, y∗
t must be an ARMA(p, p) process [see equation (2.1) of Granger

and Morris (1976)].

The moving average parameters θ1,θ2, . . . ,θp and the white noise variance σ2
η of this ARMA(p, p) process can be

found by equating the autocovariance function of the right hand side of (A.3) with that of θ(B)ηt for lags k = 0,1, . . . , p

and solving the p +1 resulting nonlinear equations

(1+θ2
1 +·· ·+θ2

p )σ2
η =σ2

v + (1+φ2
1 +·· ·+φ2

p )σ2
ϵ ,

(−θ1 +θ1θ2 +·· ·+θp−1θp )σ2
η = (−φ1 +φ1φ2 +·· ·+φp−1φp )σ2

ϵ ,

...

(−θp−1 +θ1θp )σ2
η = (−φp−1 +φ1φp )σ2

ϵ ,

−θpσ
2
η =−φpσ

2
ϵ . (A.4)

Note that there may be multiple solutions, only some of which result in an invertible process.

PROOF OF COROLLARY 3.2 From Proposition 3.1, the observed process y∗
t satisfies the following equation:

y∗
t =

p∑
j=1

φ j y∗
t− j +ηt −

p∑
j=1

θ jηt− j (A.5)

or

y∗
t =

p∑
j=1

φ j y∗
t− j + vt +ϵt −

p∑
j=1

φ j ϵt− j . (A.6)
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Multiply both sides of (A.6) by y∗
t−k , and taking expectation, we get:

γy∗ (k) =
p∑

j=1
φ jγy∗ (k − j )+E[vt y∗

t−k ]+E[ϵt y∗
t−k ]−

p∑
j=1

φ jE[ϵt− j y∗
t−k ]. (A.7)

For k = 0, we get

γy∗ (k) =
p∑

j=1
φ jγy∗ (k − j )+E[vt y∗

t ]+E[ϵt y∗
t ]−

p∑
j=1

φ jE[ϵt− j y∗
t ]

=
p∑

j=1
φ jγy∗ (k − j )+σ2

v +σ2
ϵ −

p∑
j=1

φ jE[ϵt− j (φ j y∗
t− j −φ j ϵt− j )]

=
p∑

j=1
φ jγy∗ (k − j )+σ2

v +σ2
ϵ −

p∑
j=1

φ2
jE[ϵt− j y∗

t− j −ϵ2
t− j ]

=
p∑

j=1
φ jγy∗ (k − j )+σ2

v +σ2
ϵ −

p∑
j=1

φ2
j [σ2

ϵ −σ2
ϵ ]

=
p∑

j=1
φ jγy∗ (k − j )+σ2

v +σ2
ϵ .

(A.8)

Setting 1 ≤ k ≤ p, we get

γy∗ (k) =
p∑

j=1
φ jγy∗ (k − j )+E[vt y∗

t−k ]+E[ϵt y∗
t−k ]−

p∑
j=1

φ jE[ϵt− j y∗
t−k ]

=
p∑

j=1
φ jγy∗ (k − j )+0+0−φkE[ϵt−k y∗

t−k ] =
p∑

j=1
φ jγy∗ (k − j )−φkσ

2
ϵ .

(A.9)

Setting k > p, we get

γy∗ (k) =
p∑

j=1
φ jγy∗ (k − j )+E[vt y∗

t−k ]+E[ϵt y∗
t−k ]−

p∑
j=1

φ jE[ϵt−1 y∗
t−k ]

=
p∑

j=1
φ jγy∗ (k − j )+0+0−0 =

p∑
j=1

φ jγy∗ (k − j ).

(A.10)

Combining (A.8), (A.9), and (A.10), we get the autocovariance structure of the observed process that stated in the

Corollary.

PROOF OF LEMMA 3.3 From Assumptions 2.1 - 2.2, we have

E
[|yt |yt−1

]=σ2
yE

[
exp

( wt

2
+ wt−1

2

)
zt−1

]
E
[
|zt |

]
. (A.11)

For a standard normal random variable, zt , it can be shown that

E
[
|zi

t |
]
= 2i /2

p
π
Γ

(
i +1

2

)
, (A.12)

thus for i = 1, we have

E
[
|zt |

]
=
p

2/π. (A.13)
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Now define A := wt
2 + wt−1

2 and B := zt−1, we have: A

B

∼ N

 0

0

 ,

 σ2
A

δσv
2

δσv
2 1

 (A.14)

where

σ2
A = var

( wt

2
+ wt−1

2

)
= 1

4
var(wt +wt−1) = 1

2

[
γ̃p

]
, (A.15)

γ̃p := γp (0)+γp (1) , γp (0) := var(wt ) , γp (1) := cov(wt , wt−1). (A.16)

The moment generating function for a bivariate mean zero normal random variable is given by

M(t1, t2) ≡ E[
exp(t1 A+ t2B)

]= exp

(
σ2

A t 2
1 +σ2

B t 2
2 +2ρA,BσAσB t1t2

2

)
. (A.17)

Using (A.17) and (A.14), we get:

∂M

∂t2

∣∣∣∣
t1=1,t2=0

= E[exp(A)B ] = ρA,BσAσB exp

(
σ2

A

2

)
= δσv

2
exp

(
γ̃p /4

)
(A.18)

and, on combining (A.11), (A.13) and (A.18),

E
[|yt |yt−1

]= δσvσ
2
yp

2π
exp

(
γ̃p /4

)
(A.19)

where γ̃p depends on the order of latent volatility process (p). For p = 1, . . . ,5, this yields the following expressions

for γ̃p :

γ̃1 = σ2
v

1−φ1
, (A.20)

γ̃2 = σ2
v

(1−φ1 −φ2)(1+φ2)
, (A.21)

γ̃3 = (1−φ3)σ2
v

(1−φ1 −φ2 −φ3)(1+φ1φ3 +φ2 −φ2
3)

, (A.22)

γ̃4 = (1−φ3 −φ1φ4 −φ2
4)σ2

v

(1−φ1 −φ2 −φ3 −φ4)(1+φ1φ3 +φ2 +φ4 +2φ2φ4 +φ1
2φ4 +φ2φ4

2 −φ3
2 −φ4

2 −φ4
3 −φ1φ3φ4)

, (A.23)

γ̃5 = (1−φ3 −φ1φ4 −φ2
4 −φ5 −φ2φ5 +φ3φ5 −φ2

1φ5 +φ2φ
2
5 −φ2

5 +φ3
5 −φ1φ4φ5)σ2

v

(1−φ1 −φ2 −φ3 −φ4 −φ5)κ̃
, (A.24)

where

κ̃ : = 1+φ1φ3 +φ2 +φ4 +2φ2φ4 +φ1
2φ4 +φ2φ4

2 −φ3
2 −φ4

2 −φ4
3 −φ1φ3φ4 +φ3

1φ5

−φ2
1φ3φ5 −φ2

1φ
2
5 +φ1φ2φ4φ5 +3φ1φ2φ5 +2φ1φ3φ

2
5 −φ1φ

2
4φ5 −2φ1φ4φ5 −φ1φ

3
5 +φ1φ5

−φ2
2φ

2
5 −2φ2φ3φ5 +φ2φ4φ

2
5 −φ2φ

2
5 +3φ3φ4φ5 −φ3φ

3
5 +φ3φ5 −φ4φ

2
5 +φ4

5 −2φ2
5 . (A.25)
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PROOF OF COROLLARY 3.4 The estimator of φp is based on the autocovariance structure of the process y∗
t . This

is the solution of p-system of equations from (3.3) with k = p +1, . . . , 2p. Thus

γy∗ (p) γy∗ (p −1) · · · γy∗ (1)

γy∗ (p +1) γy∗ (p) · · · γy∗ (2)
...

...
...

γy∗ (2p −1) γy∗ (2p −2) · · · γy∗ (p)

 .



φ1

φ2
...

φp

=



γy∗ (p +1)

γy∗ (p +2)
...

γy∗ (2p)

 , (A.26)

or, equivalently,

Γ (p, 1)φp = γ(p, 1) (A.27)

hence

φp =Γ (p, 1) −1γ(p, 1) (A.28)

where φp := (φ1, . . . , φp )
′
, γ(p, 1) = [γy∗ (p + 1), . . . , γy∗ (2p)]

′
are vectors, and Γ (p, 1) is a p-dimensional Toeplitz

matrices such that

Γ (p, 1) :=



γy∗ (p) γy∗ (p −1) · · · γy∗ (1)

γy∗ (p +1) γy∗ (p) · · · γy∗ (2)
...

...
...

γy∗ (2p −1) γy∗ (2p −2) · · · γy∗ (p)

 . (A.29)

Note that (A.28) is also valid for any j ≥ 1 such that

φp =Γ (p, j )−1γ(p, j ), (A.30)

where γ(p, j ) := [γy∗ (p + j ), . . . , γy∗ (2p + j −1)]
′

and Γ (p, j ) is a p-dimensional Toeplitz matrices such that

Γ (p, j ) :=



γy∗ (p + j −1) γy∗ (p + j −2) · · · γy∗ ( j )

γy∗ (p + j ) γy∗ (p + j −1) · · · γy∗ ( j +1)
...

...
...

γy∗ (2p + j −2) γy∗ (2p + j −3) · · · γy∗ (p + j −1)

 . (A.31)

Now, by (3.3) with k = 0, we have:

γy∗ (0) =φ1γy∗ (1)+·· ·+φpγy∗ (p)+σ2
v +σ2

ϵ , (A.32)

hence

σv = [γy∗ (0)−
p∑

j=1
φ jγy∗ ( j )−π2/2]1/2 = [γy∗ (0)−φ′

pγ(p)−π2/2]1/2, (A.33)

where φp := (φ1, . . . , φp )
′
, γ(p) := [γy∗ (1), . . . , γy∗ (p)]

′
and σ2

ϵ =ψ(1)(1/2) =π2/2. Now by construction,

µ= E[log(y2
t )] = log(σ2

y )+E[log(z2
t )] = log(σ2

y )−1.2704, (A.34)
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or, equivalently,

σ2
y = exp(µ+1.2704). (A.35)

Now from Lemma 3.3, we have:

δp =
p

2πλy (1)

σvσ
2
y

exp
(
− 1

4
γ̃p

)
, (A.36)

where δp is a function of λy (1) := E[|yt |yt−1], γ̃p := var(wt )+ cov(wt , wt−1) and other parameter estimates of the

model (φ1, . . . , φp , σv , σv )
′
. Expressions of δp for the lower order SVL(p) models are:

δ1 =
p

2πλy (1)

σvσ
2
y

exp

(
− 1

4

σ2
v

1−φ1

)
, (A.37)

δ2 =
p

2πλy (1)

σvσ
2
y

exp

(
− 1

4

σ2
v

(1−φ1 −φ2)(1+φ2)

)
, (A.38)

δ3 =
p

2πλy (1)

σvσ
2
y

exp

(
− 1

4

(1−φ3)σ2
v

(1−φ1 −φ2 −φ3)(1+φ1φ3 +φ2 −φ2
3)

)
, (A.39)

δ4 =
p

2πλy (1)

σvσ
2
y

exp

(
− 1

4

(1−φ3 −φ1φ4 −φ2
4)(1−φ1 −φ2 −φ3 −φ4)−1σ2

v

(1+φ1φ3 +φ2 +φ4 +2φ2φ4 +φ2
1φ4 +φ2φ

2
4 −φ2

3 −φ2
4 −φ3

4 −φ1φ3φ4)

)
. (A.40)

PROOF OF LEMMA 4.1 Under Assumptions 4.1 and 4.2 with s = 2, the observed process {y∗
t } is strictly stationarity

and geometrically ergodic with E[y∗
t ] < ∞, E[|yt |yt−1] < ∞ and E[y∗

t y∗
t+k ] < ∞. So the consistency is a simple ap-

plication of the Law of Large Numbers for stationary and ergodic processes, i.e., the Ergodic theorem; see Theorem

13.12 and Corollary 13.14 of Davidson (1994).

PROOF OF LEMMA 4.2 To establish the asymptotic normality of empirical moments, we shall use a CLT for depen-

dent processes (see Davidson (1994), Theorem 24.5, p. 385). For that purpose, we first check the conditions under

which this CLT holds. We set

X t :=


Ψt

Λt

Ψ̄t

 , Ψt := log(y2
t )−µ , Λt := [Λt ,0,Λt ,1, . . . ,Λt ,m]′ , (A.41)

Λt ,k := y∗
t y∗

t+k −γy∗ (k) = [log(y2
t )−µ][log(y2

t+k )−µ]−γy∗ (k) , k = 0, 1, . . . , m , (A.42)

Ψ̄t := [|yt |yt−1]−λy (1) , (A.43)

ST :=
T∑

t=1
X t =


∑T

t=1Ψt∑T
t=1Λt∑T
t=1 Ψ̄t

 , (A.44)
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and consider the subfields Ft =σ(st , st−1, . . .) where st = (yt , wt )
′
. We will now show that

T −1/2 ST
d−→N

0,


Vµ C

′
µ,Γ(m) Cµ,λy (1)

Cµ,Γ(m) VΓ(m) CΓ(m),λy (1)

Cµ,λy (1) C
′
Γ(m),λy (1) Vλy (1)


 , (A.45)

which in turn yields (4.2). To do this, we will check the following conditions:

(i) {X t ,Ft } is stationary and ergodic;

(ii) {X t ,Ft } is a L1-mixingale of size -1;

(iii) limsup
T→∞

T −1/2E∥ST ∥ <∞ , where ∥·∥ is the Euclidean norm.

(i) The fact that {X t ,Ft } is stationary and ergodic follows from results of Ahsan and Dufour (2021) regarding Station-

arity, Ergodicity and Beta mixing.

(ii) - (1) A mixing zero-mean process is an adapted L1-mixingale with respect to the sub-fields Ft provided it is

bounded in the L1-norm [see Davidson (1994, Theorem 14.2, p. 211)]. To see that {X t } is bounded in the L1-norm,

we note that:

E| log(y2
t )−µ| = E|y∗

t | ≤ (E|y∗
t |2)1/2 = (E[y∗2

t ])1/2 =
√
γy∗ (0) <∞, (A.46)

E|y∗
t y∗

t+k −γy∗ (k)| = E|y∗
t y∗

t+k |− |γy∗ (k)| ≤ E|y∗
t y∗

t+k |

≤ (E|y∗
t |2)1/2(E|y∗

t+k |2)1/2 = (E[y∗2
t ])1/2(E[y∗2

t+k ])1/2

= E[y∗2
t ] = γy∗ (0) <∞, for k = 0, 1, . . . , m, (A.47)

E||yt |yt−1 −λy (1)| = E|yt yt−1|− |λy (1)| ≤ E|yt yt−1|

≤ (E|yt |2)1/2(E|yt−1|2)1/2

= E[y2
t ] = γy (0) <∞, (A.48)

where the inequality in (A.46) is the application of Lyapunov’s inequality and the inequalities in (A.47)-(A.48) follows

from the Hölder’s inequality.

(ii) - (2) We now show that {X t ,Ft } is a L1−mixingale of size −1. From the discussion in Ahsan and Dufour (2021),

we know that X t is β-mixing, so it has mixing coefficients of the type βT =ψρT , ψ> 0, 0 < ρ < 1. To show that {X t }

is of size -1, its mixing coefficients βT must be O(T −ϕ), with ϕ > 1 [see Davidson (1994, Definition 16.1, p. 247)].

Indeed,
ρT

T −ϕ = Tϕexp(T logρ) = exp(ϕ logT )exp(T logρ) = exp[ϕ(logT )+T (logρ)]. (A.49)

Since lim
T→∞

[ϕ(logT )+T (logρ)] =−∞, we get

lim
T→∞

exp[ϕ(logT )+T (logρ)] = 0. (A.50)

This holds in particular for ϕ> 1; see Rudin (1976, Theorem 3.20(d), p. 57).
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(iii) To show that limsup
T→∞

T −1/2E∥ST ∥ <∞, we first observe that E(ST ) = 0 and, using the Cauchy-Schwarz inequality,

(T −1/2E∥ST ∥)2 ≤ 1

T
E(∥ST ∥2) = 1

T
E(S′

T ST ) = 1

T
tr[E(ST S′

T )] = 1

T
tr[Var(ST )]

= tr[Var(T −1/2ST )]. (A.51)

It is thus sufficient to show that

limsup
T→∞

tr[Var(T −1/2ST )] <∞ . (A.52)

We now consider separately the components Ψt and Λt of X t .

(iii) - (1) Set

ST 1 :=
T∑

t=1
Ψt , ζΨ(τ) := cov(Ψt ,Ψt+τ) . (A.53)

Then

ζΨ(τ) = E[(log(y2
t )−µ)(log(y2

t+τ)−µ)] = E[y∗
t y∗

t+τ] = γy∗ (τ) , (A.54)

Var(T −1/2ST 1) = 1

T

[
T∑

t=1
Var(Ψt )+ ∑

t ̸=s
cov(Ψt ,Ψs )

]
= 1

T

[
T ζΨ(0)+2

T∑
τ=1

(T −τ)ζΨ(τ)

]

= ζΨ(0)+2
T∑
τ=1

(1− τ

T
)ζΨ(τ) = γy∗ (0)+2

T∑
τ=1

(1− τ

T
)γy∗ (τ) (A.55)

hence

limsup
T→∞

Var(T −1/2ST 1) = limsup
T→∞

[γy∗ (0)+2
T∑
τ=1

(1− τ

T
)γy∗ (τ)]

= γy∗ (0)+2
∞∑
τ=1

γy∗ (τ) =
∞∑

τ=−∞
γy∗ (τ) ≤

∞∑
τ=−∞

|γy∗ (τ)| <∞. (A.56)

This convergence is due to the fact that y∗
t follows a stationary ARMA(p, p) process. So y∗

t can be viewed as an

MA(∞) process with absolutely summable coefficients, which implies the absolute summability of autocovariances

[see Hamilton (1994, chapter 3, page 52)]. By the Cauchy-Schwarz inequality, this entails

limsup
T→∞

T −1/2E |ST 1| <∞ . (A.57)

(iii) - (2) Set

ST 2 :=
T∑

t=1
Λt = [ST 2,0, ST 2,1, . . . , ST 2,m]′ , (A.58)

ST 2,k :=
T∑

t=1
Λt ,k , ζΛk

(τ) := cov(Λt ,k ,Λt+τ,k ) , k = 0, 1, . . . , m . (A.59)

Then, for k = 0, 1, . . . , m ,

ζΛk
(τ) = E[

(
y∗

t y∗
t+k −γy∗ (k)

)(
y∗

t+τy∗
t+τ+k −γy∗ (k)

)
] = E[y∗

t y∗
t+k y∗

t+τy∗
t+τ+k ]−γy∗ (k)2

= E[y∗
t y∗

t+k ]E[y∗
t+τy∗

t+τ+k ]+cov(y∗
t , y∗

t+τ)cov(y∗
t+k , y∗

t+τ+k )

+ cov(y∗
t , y∗

t+τ+k )cov(y∗
t+k , y∗

t+τ)−γy∗ (k)2

= γy∗ (k)2 +γy∗ (τ)2 +γy∗ (τ+k)γy∗ (τ−k)−γy∗ (k)2
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= γy∗ (τ)2 +γy∗ (τ+k)γy∗ (τ−k) , (A.60)

hence

Var(T −1/2ST 2,k ) = 1

T

[
T∑

t=1
Var(Λt ,k )+ ∑

t ̸=s
cov(Λt ,k ,Λs,k )

]
= 1

T

[
T ζΛk

(0)+2
T∑
τ=1

(T −τ)ζΛk
(τ)

]
(A.61)

= ζΛk
(0)+2

T∑
τ=1

(1− τ

T
)ζΛk

(τ) (A.62)

= γy∗ (0)2 +γy∗ (k)γy∗ (−k)+2
T∑
τ=1

(1− τ

T
)[γy∗ (τ)2 +γy∗ (τ+k)γy∗ (τ−k)] , (A.63)

and

limsup
T→∞

Var(T −1/2ST 2,k ) = γy∗ (0)2 +γy∗ (k)γy∗ (−k)

+ limsup
T→∞

[2
T∑
τ=1

(1− τ

T
)[γy∗ (τ)2 +γy∗ (τ+k)γy∗ (τ−k)]]

=
∞∑

τ=−∞
[γy∗ (τ)2 +γy∗ (τ+k)γy∗ (τ−k)]

=
∞∑

τ=−∞
γy∗ (τ)2 +

∞∑
τ=−∞

γy∗ (τ+k)γy∗ (τ−k)

=
∞∑

τ=−∞
γy∗ (τ)2 +

∞∑
τ=−∞

γ2
y∗ (τ+k) <∞ . (A.64)

This convergence is due to the fact that absolute summability implies square-summability. We deduce that

limsup
T→∞

T −1/2E
∣∣ST 2,k

∣∣<∞ , k = 0, 1, . . . , m . (A.65)

(iii) - (3) Set

ST 3 :=
T∑

t=1
Ψ̄t , ζΨ̄(τ) := cov(Ψ̄t , Ψ̄t+τ) . (A.66)

Then

ζΨ̄(τ) = E
[(|yt |yt−1 −λy (1)

)(|yt+τ|yt+τ−1 −λy (1)
)]

,

= E
[|yt |yt−1|yt+τ|yt+τ−1

]−λ2
y (1) ,

= E
[|yt |yt−1

]
E
[|yt+τ|yt+τ−1

]+E[|yt ||yt+τ|
]
E
[

yt−1 yt+τ−1
]︸ ︷︷ ︸

=0

+E[|yt |yt+τ−1
]
E
[

yt−1|yt+τ|
]−λ2

y (1) ,

= λ2
y (1)+0+λy (1−τ)λy (1+τ)−λ2

y (1) =λy (1−τ)λy (1+τ) , (A.67)

where λy (1−τ) = 0 for τ≥ 1, hence

Var(T −1/2ST 3) = 1

T

[
T∑

t=1
Var(Ψ̄t )+ ∑

t ̸=s
cov(Ψ̄t , Ψ̄s )

]
= 1

T

[
T ζΨ̄(0)+2

T∑
τ=1

(T −τ)ζΨ̄(τ)

]

= ζΨ̄(0)+2
T∑
τ=1

(1− τ

T
)ζΨ̄(τ) = ζΨ̄(0)+0 =λ2

y (1) , (A.68)
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and

limsup
T→∞

Var(T −1/2ST 3) = limsup
T→∞

[
λ2

y (1)
]
=λ2

y (1) <∞ . (A.69)

By the Cauchy-Schwarz inequality, this entails

limsup
T→∞

T −1/2E |ST 3| <∞ . (A.70)

Combining (A.57), (A.65) and (A.70), we get, for any (m +3)×1 fixed real vector a ̸= 0,

limsup
T→∞

T −1/2E
∣∣a′ST

∣∣<∞ . (A.71)

It is also clear properties (i) and (ii) also hold if we replace ST by a′ST . Thus we can apply Theorem 24.5 of Davidson

(1994) to a′ST to state that T −1/2(a′ST ) is asymptotically normal. Since this holds for any a ̸= 0, it follows from the

Cramér-Wold theorem that T −1/2 ∑T
t=1 X t is asymptotically multinormal:

T −1/2ST = T −1/2
T∑

t=1
X t =

p
T


µ̂−µ

Γ̂(m)−Γ(m)

λ̂y (1)−λy (1)

 d−→N (0, V ), (A.72)

where

V = lim
T→∞

E{[T −1/2ST ][T −1/2ST ]
′
} =


Vµ C

′
µ,Γ(m) Cµ,λy (1)

Cµ,Γ(m) VΓ(m) CΓ(m),λy (1)

Cµ,λy (1) C
′
Γ(m),λy (1) Vλy (1)

 . (A.73)

Using (A.56), (A.63) and (A.69), we have:

Vµ = γy∗ (0)+2
∞∑
τ=1

γy∗ (τ) , Vλy (1) = Var(Ψ̄t )+2
∞∑
τ=1

cov(Ψ̄t , Ψ̄t+τ) =λ2
y (1) , (A.74)

VΓ(m) = Var(Λt )+2
∞∑
τ=1

cov(Λt ,Λt+τ) , Cµ,Γ(m) = [Cµ0, Cµ1, . . . , Cµm]′ , (A.75)

Cµk = ∑
t

cov(Ψt ,Λt ,k ) = 2
∞∑

t=1
E[Ψt

(
y∗

t y∗
t+k −γy∗ (k)

)
]

= 2
∞∑

t=1
E[y∗

t

(
y∗

t y∗
t+k −γy∗ (k)

)
] = 2

∞∑
t=1

[E(y∗2
t y∗

t+k )−E(y∗
t )γy∗ (k)]

= 2
∞∑

t=1
E(y∗2

t y∗
t+k ) , k = 0, 1, 2, . . . , m. (A.76)

Further, for k = 0, we substitute y∗
t = wt +ϵt to get

c̄ :=Cµ0 = 2
∞∑

t=1
E(y∗3

t ) = 2
∞∑

t=1
[E(w3

t )+E(ϵ3
t )] = 2

∞∑
t=1
E(ϵ3

t ). (A.77)

Since {zt } is a sequence of i.i.d. N (0, 1) random variables, we have E(ϵ3
t ) = ψ(2)( 1

2 ) [see (2.8)], which is equal to

−14Z(3) where Z(·) is Riemann’s Zeta function with Z(3) = 1.20205.1 For k = 1, . . . , m, it is easily seen that Cµk = 0

1The Riemann Zeta function for s ∈C with Re(s) > 1 is defined as Z(s) =∑∞
n=1

1
ns .
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from the MA(∞) representation of wt . So Cµ,Γ(m) is a (m + 1)× 1 vector given by (c̄, 0[m×1])′, with c̄ is defined in

(A.77). Now

Cµ,λy (1) = ∑
t

cov(Ψt , Ψ̄t ) = 2
∞∑

t=1
E[y∗

t

(|yt |yt−1 −λy (1)
)
]

= 2
∞∑

t=1
E[y∗

t |yt |yt−1]−E[y∗
t ]︸ ︷︷ ︸

=0

λy (1)

= 2
∞∑

t=1
E[(wt +ϵt )|yt |yt−1] = 2

∞∑
t=1

(
E[wt |yt |yt−1]+E[ϵt |yt |yt−1]

)
= 2

∞∑
t=1

(
E[|yt |wt yt−1]+E[|yt |yt−1ϵt ]

)
= 2

∞∑
t=1

(
2E[|yt |]cov(wt , yt−1)+σ2

yE
[

exp
( wt

2

)
|zt |exp

( wt−1

2

)
zt−1ϵt

])
= 2

∞∑
t=1

(
2E[|yt |]E[wt , yt−1]+σ2

yE
[

exp
( wt

2

)
exp

( wt−1

2

)
zt−1

]
E[|zt |ϵt ]

)

= 2
∞∑

t=1

2σy E

[
exp

( wt

2

)]
︸ ︷︷ ︸
=exp

(
γw (0)

8

) E[|zt |]σyE

[
exp

( wt−1

2

)
zt−1wt

]

+σ2
y E

[
exp

( wt

2
+ wt−1

2

)
zt−1

]
︸ ︷︷ ︸

= δpσv
2 exp

(
γw (0)+γw (1)

4

)
E[|zt | log(z2

t )]︸ ︷︷ ︸
=

√
2
π (log2−γϵ)

−E[|zt |]︸ ︷︷ ︸
=

√
2
π

E[log(z2
t )]︸ ︷︷ ︸

=ψ(0)(0.5)+log2




= 2
∞∑

t=1

4σ2
y exp

(γw (0)

8

)√ 2

π
E

[
exp

( wt−1

2

)]
cov(zt−1, wt )︸ ︷︷ ︸
=E[zt−1wt ]=δpσv

+σ2
y

δpσv

2
exp

(γw (0)+γw (1)

4

)√ 2

π

(−γϵ−ψ(0)(0.5)
))

= 2
∞∑

t=1

(
4

√
2

π
δpσvσ

2
y exp

(γw (0)

8

)
exp

(γw (0)

8

)
+σ2

y

δpσv

2
exp

(γw (0)+γw (1)

4

)√ 2

π

(−γϵ−ψ(0)(0.5)
))

= 2
∞∑

t=1

(
4

√
2

π
δpσvσ

2
y exp

(γw (0)

4

)
+σ2

yδpσv exp
(γw (0)+γw (1)

4

)√ 1

2π

(−γϵ−ψ(0)(0.5)
))

= 2
∞∑

t=1

δpσvσ
2
yp

2π
exp

(γw (0)

4

)[
8− (

γϵ+ψ(0)(0.5)
)

exp
(γw (1)

4

)]
, (A.78)

where γw (k) = cov(wt , wt+k ), ψ(0)(z) is the digamma function and γϵ is the Euler-Mascheroni constant.

CΓ(m),λy (1) = [Cλ0, Cλ1, . . . , Cλm]′ , (A.79)

Cλk = ∑
t

cov(Ψ̄t ,Λt ,k ) = 2
∞∑

t=1
E[

(|yt |yt−1 −λy (1)
)(

y∗
t y∗

t+k −γy∗ (k)
)
]

= 2
∞∑

t=1

(
E
[|yt |yt−1 y∗

t y∗
t+k

]−λy (1)γy∗ (k)
)
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= 2
∞∑

t=1

(
E[|yt |]cov(yt−1, y∗

t y∗
t+k )+cov(|yt |, yt−1)cov(y∗

t , y∗
t+k )

+cov(|yt |, y∗
t )cov(yt−1, y∗

t+k )+cov(|yt |, y∗
t+k )cov(yt−1, y∗

t )−λy (1)γy∗ (k)
)

= 2
∞∑

t=1

(
E[|yt |]E[yt−1 y∗

t y∗
t+k ]+E[|yt |yt−1]E[y∗

t , y∗
t+k ]

+E[|yt |, y∗
t ]E[yt−1, y∗

t+k ]+E[|yt |y∗
t+k ]E[(yt−1 y∗

t ]−λy (1)γy∗ (k)
)

= 2
∞∑

t=1

(
E[|yt |]E[yt−1 y∗

t y∗
t+k ]+E[|yt |y∗

t ]E[yt−1 y∗
t+k ]

+E[|yt |y∗
t+k ]E[(yt−1 y∗

t ]
)

, k = 0, 1, 2, . . . , m. (A.80)

Now

E[|yt |]E[yt−1 y∗
t y∗

t+k ] = E[|yt |]E
[

yt−1(wt +ϵt )(wt+k +ϵt+k )
]

= E[|yt |]E
[

yt−1wt wt+k
]= E[|yt |]E

[
σy exp

( wt−1

2

)
zt−1wt wt+k

]
= σyE

[
σy exp

( wt

2

)
|zt |

][
E
[

exp
( wt−1

2

)
zt−1

]
E [wt wt+k ]+E

[
exp

( wt−1

2

)
wt

]
E [zt−1wt+k ]

+E
[

exp
( wt−1

2

)
wt+k

]
E [zt−1wt ]

]

= σ2
y E

[
exp

( wt

2

)]
︸ ︷︷ ︸
=exp

(
γw (0)

8

) E [|zt |]︸ ︷︷ ︸
=

√
2
π

E
[

exp
( wt−1

2

)]
E [zt−1]︸ ︷︷ ︸

=0

E [wt wt+k ]+E
[

exp
( wt−1

2

)
wt

]
︸ ︷︷ ︸
= γw (1)

2 exp

(
γw (0)

8

) E [zt−1wt+k ]︸ ︷︷ ︸
=δpσv ψ̄k

+E
[

exp
( wt−1

2

)
wt+k

]
︸ ︷︷ ︸
= γw (k+1)

2 exp

(
γw (0)

8

) E [zt−1wt ]︸ ︷︷ ︸
=δpσv


= σ2

y exp
(γw (0)

8

)√ 2

π

(
δpσv ψ̄k

γw (1)

2
exp

(γw (0)

8

)
+δpσv

γw (k +1)

2
exp

(γw (0)

8

))
= δpσvσ

2
y

√
1

2π
exp

(γw (0)

4

)(
ψ̄kγw (1)+γw (k +1)

)
, (A.81)

where ψ̄k is k-th parameter of the MA(∞) representation the latent log volatility process,

E[|yt |y∗
t ]E[yt−1 y∗

t+k ] = E[σy exp
( wt

2

)
|zt |(wt +ϵt )]E[yt−1(wt+k +ϵt+k )]

= σyE
[

exp
( wt

2

)
|zt |(wt +ϵt )

]E[yt−1wt+k ]+E[yt−1]E[ϵt+k )]︸ ︷︷ ︸
=0


= σ2

y

(
E
[

exp
( wt

2

)
|zt |wt

]
+E

[
exp

( wt

2

)
|zt | log(z2

t )
]
−E

[
exp

( wt

2

)
|zt |

]
E
[
log(z2

t )
])(
E[exp

( wt−1

2

)
zt−1wt+k ]

)

= σ2
y

E [|zt |]︸ ︷︷ ︸
=
p

2
π

E
[

exp
( wt

2

)
wt

]
︸ ︷︷ ︸
= γw (0)

2 exp

(
γw (0)

8

) +E
[

exp
( wt

2

)]
︸ ︷︷ ︸
=exp

(
γw (0)

8

) E
[|zt | log(z2

t )
]︸ ︷︷ ︸

=
√

2
π (log2−γϵ)
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−E [|zt |]︸ ︷︷ ︸
=
p

2
π

E
[

exp
( wt

2

)]
︸ ︷︷ ︸
=exp

(
γw (0)

8

) E
[
log(z2

t )
]︸ ︷︷ ︸

=ψ(0)(0.5)+log2



E
[

exp
( wt−1

2

)]
︸ ︷︷ ︸

=exp

(
γw (0)

8

) cov(zt−1, wt+k )︸ ︷︷ ︸
=E[zt−1wt+k ]=δpσv ψ̄k


= δpσvσ

2
y ψ̄k

√
2

π
exp

(γw (0)

4

)(
γw (0)

2
−γϵ−ψ(0)(0.5)

)
, (A.82)

E[|yt |y∗
t+k ]E[yt−1 y∗

t ] = E[σy exp
( wt

2

)
|zt |(wt+k +ϵt+k )]E[yt−1(wt +ϵt )]

= σyE
[

exp
( wt

2

)
|zt |(wt+k +ϵt+k )

]E[yt−1wt ]+E[yt−1]E[ϵt )]︸ ︷︷ ︸
=0


= σ2

y

E[
exp

( wt

2

)
|zt |wt+k

]
+E

[
exp

( wt

2

)
|zt |

]
E[ϵt+k )]︸ ︷︷ ︸

=0

(
E[exp

( wt−1

2

)
zt−1wt ]

)

= σ2
y

E [|zt |]︸ ︷︷ ︸
=
p

2
π

E
[

exp
( wt

2

)
wt+k

]
︸ ︷︷ ︸
= γw (k)

2 exp

(
γw (0)

8

)



2E
[

exp
( wt−1

2

)]
︸ ︷︷ ︸

=exp

(
γw (0)

8

) cov(zt−1, wt )︸ ︷︷ ︸
=E[zt−1wt ]=δpσv


= δpσvσ

2
y ψ̄k

√
2

π
exp

(γw (0)

4

)
γw (k) . (A.83)

Combing (A.81)-(A.83), we have

Cλk = 2
∞∑

t=1

(
δpσvσ

2
yp

2π
exp

(γw (0)

4

)(
γw (0)+ ψ̄kγw (1)+0.5ψ̄kγw (k)+γw (k +1)− γϵ+ψ(0)(0.5)

2

))
,

k = 0, 1, 2, . . . , m. (A.84)

where ψ̄k is k-th parameter of the MA(∞) representation of the latent log volatility process, γw (k) = cov(wt , wt+k ),

ψ(0)(z) is the digamma function and γϵ is the Euler-Mascheroni constant. Finally, (4.2) follows on observing that

p
T


µ̂−µ

Γ̂(m)−Γ(m)

λ̂y (1)−λy (1)

−T −1/2ST
p−→

T→∞
0. (A.85)

PROOF OF THEOREM 4.3 It is easily seen that Dp is a continuously differentiable mapping of

[µ,γy∗ (0),γy∗ (1), . . . , γy∗ (2p)]
′
. The convergence result stated in (4.9) follows from the standard result for differ-

entiable transformations of asymptotically normally distributed variables together with the application of the mul-

tivariate delta method.

In case of an SVL(1) model,

D1 := D1(β) = (Dφ1
, Dσy , Dσv , Dδ1 )

′
, β := [µ,γy∗ (0),γy∗ (1),γy∗ (2),λy (1)]

′
, (A.86)
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Dφ1
= γy∗ (2)/γy∗ (1) , Dσy = exp(µ+1.2704)1/2 , Dσv = [1− (γy∗ (2)/γy∗ (1))2][γy∗ (0)−π2/2] , (A.87)

Dδ1 =
p

2πλy (1)

σvσ
2
y

exp

(
− 1

4

σ2
v

1−φ1

)
, (A.88)

G(β) := ∂D1

∂β
′ =



0 0 −Ã 1
γy∗ (1) 0

B̃
2 0 0 0 0

0 − C̃
2F̃

γy∗ (2)2D̃

γy∗ (1)3F̃
− γy∗ (2)D̃

γy∗ (1)2F̃
0

−
p

2λy (1)
p
πe−Ẽ e−(µ+1.2704)

F̃
J̃ K̃ L̃

p
2
p
πe−Ẽ e−(µ+1.2704)

F̃


, (A.89)

where

Ã =
γy∗ (2)

γy∗ (1)2 , B̃ =
√

eµ+1.2704 , C̃ =
γy∗ (2)2

γy∗ (1)2 −1, D̃ = γy∗ (0)− π2

2
, Ẽ = C̃ D̃

4(Ã−1)
(A.90)

F̃ =
√
−C̃ D̃ , G̃ =

(
γy∗ (1)2 −γy∗ (2)2

)
, H̃ = 2γy∗ (0)−π2 (A.91)

Ĩ = γy∗ (1)2π2 −2γy∗ (0)γy∗ (1)2 +8γy∗ (1)γy∗ (2)−γy∗ (2)2π2 +2γy∗ (0)γy∗ (2)2 (A.92)

J̃ =−
p

2λy (1)
p
πe−(µ+1.2704)−Ẽ G̃(4γy∗ (1)+2γy∗ (0)γy∗ (1)+2γy∗ (0)γy∗ (2)−γy∗ (1)π2 −γy∗ (2)π2)

8γy∗ (1)3F̃ 3/2
(A.93)

K̃ =−
p

2γy∗ (2)λy (1)
p
πe−(µ+1.2704)−Ẽ H̃ Ĩ

16γy∗ (1)4F̃ 3/2
, L̃ =

p
2λy (1)

p
πe−(µ+1.2704)−Ẽ H̃ Ĩ

16γy∗ (1)3F̃ 3/2
. (A.94)
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B Additional ARMA-based winsorized estimators

We can achieve better stability and efficiency of the CF-ARMA estimator by using “winsorization”. Winsorization

substantially increases the probability of getting admissible values. Using (3.23), we propose alternative estimators

of φp and we call these estimators winsorized ARMA estimators (or W-ARMA estimators). Other (possibly nonlinear)

averaging methods, such as the median, may also be used. We consider four types of winsorized estimators based

on the expression (3.23) in the simulation section.

1. The first winsorized estimate φ̂
m
p is the arithmetic mean of sample ratios (equal weights):

ω j = 1/J , j = 1, . . . , J , (B.95)

in (3.23). This type of winsorization is also considered by Kristensen and Linton (2006) in the context of the

GARCH(1, 1) model estimation.

2. The second estimate φ̂
ld
p is a mean of ratios with linearly declining (LD) weights:

ω j = (2/J )[1− ( j /(J +1))] , j = 1, . . . , J . (B.96)

3. The third estimate is the median-based estimate obtained by taking the median of J estimates of each one of

the p components of φp :

φ̂
med
p = [φ̂

med
1 , . . . , φ̂

med
p ]′ , φ̂

med
i = med

{
B̂(p, j )i : 1 ≤ j ≤ J

}
, i = 1, . . . , p. (B.97)

4. The fourth estimate is obtained by an OLS regression coefficient (without intercept):

φ̂
ols
p = [A(p, J )′A(p, J )]−1 A(p, J )′e(p, J ) (B.98)

where e(p, J ) is a (p J )×1 vector and A(p, J ) is a (p J )×p matrix defined by

e(p, J ) = [γ̂(p, 1)ω1/2
1 , . . . , γ̂(p, J )ω1/2

J ]′ , A(p, J ) = [Γ̂ (p, 1)ω1/2
1 , . . . , Γ̂ (p, J )ω1/2

J ]′ . (B.99)

Clearly, different OLS-based W-ARMA can be generated by considering different weights ω1, . . . ,ωJ .

All these estimators are depend on J . For J = 1, they are equivalent to the simple CF-ARMA estimator given in

(3.15).
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C Additional simulation results

Table A1. Empirical power of tests for no leverage in SVL(1) model (moderate persistence & LMC not
level-corrected)

H0: δ= 0 vs. H1: δ ̸= 0
δ=−0.90 δ=−0.70 δ= 0.70 δ= 0.90

T Asy LMC MMC Asy LMC MMC Asy LMC MMC Asy LMC MMC
φ= 0.90, σy = 0.10, σv = 0.75

500 61.9 73.4 20.9 42.3 51.9 12.5 42.5 50.1 11.4 63.8 73.7 19.5

1000 84.9 92.8 36.8 59.8 75.4 19.7 61.9 75.7 18.7 85.6 93.7 35.4

2000 99.1 99.2 58.7 85.6 91.5 31.7 85.6 91.6 31.9 98.7 99.3 60.3

5000 100.0 100.0 94.9 99.8 99.9 70.6 99.9 100.0 68.4 100.0 100.0 93.9

φ= 0.75, σy = 0.10, σv = 1.00
500 96.2 98.3 62.3 80.8 87.6 35.8 80.8 87.9 35.2 96.5 98.4 63.6

1000 100.0 99.9 93.3 99.0 99.4 70.5 98.8 99.4 72.8 100.0 100.0 92.9

2000 100.0 100.0 99.7 100.0 100.0 94.5 100.0 100.0 94.4 100.0 100.0 99.9

5000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Notes: Rejection frequencies are obtained using 1000 replications. Monte Carlo tests use N = 99 simulations. Asymmetric test
results are level-corrected using N = 10000 and true parameters (i.e., infeasible test in practice as it requires knowing the true
DGP). LMC test results are level-corrected using N = 1,000 and true parameters.
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Table A2. Empirical power of tests for no leverage in SVL(1) model (high persistence & LMC not
level-corrected)

H0: δ= 0 vs. H1: δ ̸= 0
T δ=−0.90 δ=−0.70 δ= 0.70 δ= 0.90
T Asy LMC MMC Asy LMC MMC Asy LMC MMC Asy LMC MMC

φ= 0.99, σy = 0.10, σv = 0.25
500 23.4 26.1 8.4 19.4 21.5 7.9 22.8 25.0 6.2 25.6 29.2 8.1

1000 34.1 40.6 12.4 26.6 31.2 10.4 23.2 29.2 8.6 29.7 35.7 9.2

2000 43.7 50.6 16.5 30.2 35.8 12.0 30.7 37.8 12.4 44.3 50.9 17.9

5000 68.8 73.1 31.7 46.9 52.8 20.0 44.5 50.7 18.1 66.0 72.6 27.5

φ= 0.95, σy = 0.10, σv = 0.50
500 42.9 53.2 12.8 29.6 37.2 8.0 30.9 40.1 8.1 44.9 57.4 13.2

1000 67.9 80.6 26.2 46.3 61.2 14.6 44.4 59.3 13.0 67.1 81.8 24.1

2000 87.6 95.2 40.1 62.7 76.7 20.3 65.7 79.1 22.7 89.8 94.8 43.9

5000 100.0 100.0 82.3 96.4 97.9 48.0 96.0 98.1 43.7 100.0 99.8 79.9

Notes: Rejection frequencies are obtained using 1000 replications. Monte Carlo tests use N = 99 simulations. Asymmetric test
results are level-corrected using N = 10000 and true parameters (i.e., infeasible test in practice as it requires knowing the true
DGP). LMC test results are level-corrected using N = 1,000 and true parameters.

Table A3. Empirical power of tests for no leverage in SVL(2) model (LMC not level-corrected)

H0: δ= 0 vs. H1: δ ̸= 0
δ=−0.90 δ=−0.70 δ= 0.70 δ= 0.90

T Asy LMC MMC Asy LMC MMC Asy LMC MMC Asy LMC MMC
φ1 = 0.05, φ2 = 0.85, σy = 1.00, σv = 1.00

500 62.4 67.5 47.0 49.4 56.9 34.1 50.0 55.2 34.3 62.1 65.8 45.2

1000 74.3 75.3 52.8 60.1 63.0 39.5 61.5 65.8 40.9 75.5 76.2 53.8

2000 90.3 88.1 67.4 80.9 80.3 52.5 80.9 80.2 49.9 91.0 87.4 66.3

5000 99.8 98.7 88.6 99.1 96.2 77.4 99.4 95.9 78.8 100.0 98.8 87.8

φ1 = 0.05, φ2 = 0.70, σy = 1.00, σv = 1.00
500 97.7 96.7 87.7 90.5 92.8 74.6 90.9 92.3 72.0 97.6 96.5 88.8

1000 100.0 99.2 96.6 99.8 98.7 92.7 99.7 98.7 92.5 100.0 99.4 96.7

2000 100.0 99.9 99.4 100.0 99.9 98.4 100.0 99.9 97.8 100.0 99.9 98.9

5000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0 100.0

Notes: Rejection frequencies are obtained using 1000 replications. Monte Carlo tests use N = 99 simulations. Asymmetric test
results are level-corrected using N = 10000 and true parameters (i.e., infeasible test in practice as it requires knowing the true
DGP). LMC test results are level-corrected using N = 1,000 and true parameters.
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Figure A1. Power curves of test for no leverage in SV(1) model when φ= 0.90, σy = 0.10, and σv = 0.75
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Notes: Red is Asymptotic test (level corrected), blue is the Local Monte Carlo test (level corrected), and green is the Maximized Monte Carlo test.
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Figure A2. Power curves of test for no leverage in SV(1) model when φ= 0.75, σy = 0.10, and σv = 1.00
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Notes: Red is Asymptotic test (level corrected), blue is the Local Monte Carlo test (level corrected), and green is the Maximized Monte Carlo test.
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Figure A3. Power curves of test for no leverage in SV(1) model when φ= 0.90, σy = 0.10, and σv = 0.75
(LMC not level-corrected)
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Notes: Red is Asymptotic test (level corrected), blue is the Local Monte Carlo test, and green is the Maximized Monte Carlo test.
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Figure A4. Power curves of test for no leverage in SV(1) model when φ= 0.75, σy = 0.10, and σv = 1.00
(LMC not level-corrected)
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Notes: Red is Asymptotic test (level corrected), blue is the Local Monte Carlo test, and green is the Maximized Monte Carlo test.
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Figure A5. Power curves of test for no leverage in SV(1) model when φ= 0.99, σy = 0.10, and σv = 0.25
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Notes: Red is Asymptotic test (level corrected), blue is the Local Monte Carlo test (level corrected), and green is the Maximized Monte Carlo test.
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Figure A6. Power curves of test for no leverage in SV(1) model when φ= 0.95, σy = 0.10, and σv = 0.50
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Notes: Red is Asymptotic test (level corrected), blue is the Local Monte Carlo test (level corrected), and green is the Maximized Monte Carlo test.
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Figure A7. Power curves of test for no leverage in SV(1) model when φ= 0.99, σy = 0.10, and σv = 0.25
(LMC not level-corrected)
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Notes: Red is Asymptotic test (level corrected), blue is the Local Monte Carlo test, and green is the Maximized Monte Carlo test.
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Figure A8. Power curves of test for no leverage in SV(1) model when φ= 0.95, σy = 0.10, and σv = 0.50
(LMC not level-corrected)
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Notes: Red is Asymptotic test (level corrected), blue is the Local Monte Carlo test, and green is the Maximized Monte Carlo test.
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Figure A9. Power curves of test for no leverage in SV(2) model when φ1 = 0.05, φ2 = 0.85, σy = 1.00, and
σv = 1.00
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Notes: Red is Asymptotic test (level corrected), blue is the Local Monte Carlo test (level corrected), and green is the Maximized Monte Carlo test.
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Figure A11. Power curves of test for no leverage in SV(2) model when φ1 = 0.05, φ2 = 0.70, σy = 1.00, and
σv = 1.00
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Notes: Red is Asymptotic test (level corrected), blue is the Local Monte Carlo test (level corrected), and green is the Maximized Monte Carlo test.
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Figure A11. Power curves of test for no leverage in SV(2) model when φ1 = 0.05, φ2 = 0.85, σy = 1.00, and
σv = 1.00 (LMC not level-corrected)
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Notes: Red is Asymptotic test (level corrected), blue is the Local Monte Carlo test, and green is the Maximized Monte Carlo test.
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Figure A12. Power curves of test for no leverage in SV(2) model when φ1 = 0.05, φ2 = 0.70, σy = 1.00, and
σv = 1.00 (LMC not level-corrected)
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Notes: Red is Asymptotic test (level corrected), blue is the Local Monte Carlo test, and green is the Maximized Monte Carlo test.
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D Complementary empirical results

Table A4. Summary statistics

Sample from 2000-Jan-04 to 2023-May-31 (T = 5,889)
Series Mean SD Kurtosis SK Range Min Max LB(10)

S&P500 yt 0.00 1.25 10.16 -0.37 23.72 -12.78 10.94 97.32

(T = 5,889) y2
t 1.56 5.43 271.31 13.58 163.41 0.00 163.41 5741.49

y∗t 0.00 2.58 2.47 -1.07 25.33 -18.64 6.70 1636.99

DOWJ yt 0.00 1.19 12.53 -0.37 24.61 -13.86 10.75 110.28

(T = 5,889) y2
t 1.41 5.39 411.54 16.55 192.10 0.00 192.10 5809.00

y∗t 0.00 2.54 1.82 -0.98 22.37 -15.42 6.95 1551.33

NASDQ yt 0.00 1.60 6.06 -0.13 26.40 -13.17 13.24 63.06

(T = 5,889) y2
t 2.56 7.26 161.34 10.04 175.17 0.00 175.17 4230.10

y∗t 0.00 2.56 2.37 -1.07 24.46 -18.28 6.19 1979.06

Notes: 1. yt = rt −µ is the residual return, y2
t is the squared of residual return and y∗t is the residual of log squared of residual return. 2. LB(10)

is the heteroskedasticity-corrected Ljung-Box statistics with 10 lags. The critical values for LB(10) are: 15.99 (10%), 18.31 (5%), and 23.21 (1%).
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Figure A13. Time series of stock indices from 2000-Jan-04 to 2023-May-31 (T = 5,889)
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Notes: Demeaned returns are shown (i.e., yt = rt −µ) for each stock index.
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Table A6. Empirical volatility forecasting performance with competing conditional volatility models
(larger estimation window)

S&P 500 Dow Jones NASDAQ
Models h = 1 h = 5 h = 10 h = 1 h = 5 h = 10 h = 1 h = 5 h = 10
ARCH(1) 8.101 43.040 88.250 8.862 47.620 96.701 8.035 40.910 81.936

ARCH(2) 7.327 39.415 82.705 8.222 43.817 90.654 7.409 38.567 79.519

ARCH(3) 7.063 37.745 80.925 7.962 42.174 88.263 7.311 37.653 77.798

GARCH(1,1) 6.865 35.276 73.095 7.832 39.922 80.865 7.073 35.651 72.351

GARCH(2,2) 6.824 35.080 72.780 7.810 39.725 80.544 7.031 35.480 72.035

GARCH(3,3) 6.818 35.046 72.744 7.809 39.724 80.540 7.022 35.435 71.988

EGARCH(1,1) 6.568 33.881 69.999 7.636 38.723 78.100 6.827 34.425 69.701

EGARCH(2,2) 6.530 33.753 69.805 7.628 38.705 78.067 6.775 34.323 69.523

EGARCH(3,3) 6.641 34.434 71.390 7.665 38.878 78.530 6.878 34.982 71.085

GJR(1,1) 6.614 34.206 70.984 7.668 39.194 79.525 6.875 34.744 70.518

GJR(2,2) 6.585 34.073 70.791 7.662 39.128 79.404 6.846 34.619 70.326

GJR(3,3) 6.574 34.087 70.854 7.645 39.058 79.279 6.854 34.740 70.566

SV(1) 5.234 26.906 56.077 5.932 29.936 60.345 5.577 27.924 56.833

SV(2) 5.282 28.767 60.697 6.051 31.202 63.594 5.637 29.499 61.006

SV(3) 5.227 29.331 61.338 5.940 31.621 64.082 5.562 29.977 61.582

SVL(1) 4.978 26.145 55.080 5.804 29.489 59.960 5.453 27.584 56.431

SVL(2) 5.273 28.747 60.677 6.041 31.177 63.569 5.630 29.473 60.979

SVL(3) 5.180 29.252 61.258 5.891 31.532 63.992 5.540 29.930 61.534

Notes: The reported values represent the Mean Squared Error (MSE) for each model at different horizons: h = 1 (one day), h = 5
(one week), and h = 10 (two weeks). The values in bold indicate that the model is part of the Model Confidence Set (MCS) for
that horizon and that specific index. The MCS is determined using a 5% significance level. The values in bold red indicate the
models in the MCS with the lowest MSE. Sample for each index is from 2000-Jan-04 to 2023-May-31 (T = 5,889). Estimates are
obtained using W-ARMA estimator given in (3.24) with J = 250. Out-of-sample forecasting is performed using a rolling window
scheme of size Test = 4,880, where the first estimation window ends at observation 4,879, and the last estimation window starts
at observation 1,001 but ends at observation 5,879.
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