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Abstract

Markov switching models have wide applications in economics, finance, and other fields.
Most studies focusing on identifying the number of regimes in a Markov switching model have
been limited to testing the null hypothesis of only one regime (i.e., a linear model with no
switching) against an alternative hypothesis with two regimes. Even in such simple cases, this
type of problem raises issues of nonstandard asymptotic distributions, identification failure, and
nuisance parameters. In this paper, we propose Monte Carlo test methods [Dufour (2006)] which
deal transparently with these distributional issues, even allowing for finite-sample inference.
The procedure is applied to likelihood ratio statistics. The tests circumvent the issues plaguing
conventional hypothesis testing. This also allows one to deal with non-stationary processes,
models with non-Gaussian errors and multivariate settings, which have received little attention in
the literature. An important contribution of this paper is the Maximized Monte Carlo Likelihood
Ratio Test (MMC-LRT), which is an identifications-robust valid test procedure both in finite
samples and asymptotically. Further, the methods proposed are applicable to more general
settings where a null hypothesis with M0 regimes is tested against an alternative with M0 +m
regimes where both M0 ≥ 1 and m ≥ 1. This allows one to compare different Markov switching
models and Hidden Markov Models. Simulation results are provided for both univariate and
multivariate settings and suggest the proposed tests are able to control the level of the test and
have good power. Finally, an empirical application using U.S. GNP growth data suggests three
regimes are appropriate for modeling the series from 1951Q2 - 2022Q3. Our results confirm
evidence about the Great Moderation in the sense that two regimes have positive growth but
experience a change (reduction) in variance in the mid-80s. The third regime is consistent
with recessionary periods as it matches NBER suggested recession dates. Like Gadea, Gómez-
Loscos, and Pérez-Quirós (2018) we find that the low volatility regime continues after the Great
Recession but the high volatility period returns following the recent recession induced by the
COVID-19 pandemic.
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1 Introduction

Markov-switching models (MSM) were first introduced by Goldfeld and Quandt (1973) and later
popularized by Hamilton (1989) as an alternative approach to modelling U.S. GNP growth. These
models allow one to treat a series as a nonlinear process where the nonlinearity arises from discrete
shifts. The process before and after a shift can be described as two separate regimes, and Hamilton
(1989) describes these regimes as episodes where the behavior of the series is significantly different.
Using U.S. GNP growth as an example, one regime can characterize a period of positive growth,
while the other represents a period of negative growth due to recessions. Due to this flexibility, they
have since been widely used in macroeconomics and finance. For example, MSMs have been applied
to the identification of business cycles [Chauvet 1998; Chauvet and Hamilton 2006; Chauvet, Juhn,
and Potter 2002; Diebold and Rudebusch 1996; Hamilton 1989; Kim and Nelson 1999; Qin and
Qu 2021], interest rate dynamics (Garcia and Perron 1996), financial markets (Marcucci 2005),
conditional heteroskedasticity models [Augustyniak 2014; Gray 1996; Haas, Mittnik, and Paolella
2004; Hamilton and Susmel 1994; Klaassen 2002], conditional correlations (Pelletier 2006) and
identification of structural VAR models [Herwartz and Lütkepohl 2014; Lanne, Lütkepohl, and
Maciejowska 2010; Lütkepohl et al. 2021] to name a few. More complete surveys of this literature
include Hamilton (2010), Hamilton (2016) and Ang and Timmermann (2012). Applications of
MSMs outside of the macroeconomic and financial literature include: environmental and energy
economics [Cevik, Yıldırım, and Dibooglu 2021; Charfeddine 2017; Chevallier 2011], industrial
organization (Resende 2008), health economics (Anser et al. 2021) and many others. An alternative
but related model is the Hidden Markov Model (HMM). Like MSMs, HMMs are used to describe a
process Yt which depends on a latent Markov process St. However, HMMs depend only on St, which
takes discrete values {1, . . . , M} where M is the number of regimes. In contrast, as described by
An et al. (2013), when the process Yt also depends on lags of Yt (e.g., {Yt−1, . . . , Yt−p}), it is
called a Hidden Markov-switching model, or simply a Markov-switching model. The dependence
on past observations allows for more general interactions between Yt and St, which can be used
to model more complicated causal links between economic or financial variables of interest, so
that MSMs are a generalization of the basic HMM. However, it is worth noting that HMMs have
many applications including computational molecular biology [Baldi et al. 1994; Krogh, Mian, and
Haussler 1994], handwriting and speech recognition [Jelinek 1997; Nag, Wong, and Fallside 1986;
Rabiner and Juang 1986; Rabiner and Juang 1993], computer vision and pattern recognition (Bunke
and Caelli 2001), and other machine learning applications.

An important issue with MSMs and HMMs is that the number of states or regimes must be
determined a priori. Since the number of regimes is not always known, it is of interest to test the
fit of a given model with a certain number of regimes (e.g., M0 regimes), against an alternative
model with a different number of regimes (e.g., M0 +m regimes). This highlights the importance
of valid test procedures to determine the number of regimes in these types of models. However,
standard hypothesis testing techniques are not easily applicable in this setting, because certain
parameters of the model are unidentified under the null hypothesis, and usual regularity conditions
needed to derive the asymptotic distribution of test statistics are not satisfied. The study of the
asymptotic distribution of the likelihood ratio test for MSMs is a problem that has received a lot
of attention [see Carter and Steigerwald 2012; Cho and White 2007; Garcia 1998; Hansen 1992;
Kasahara and Shimotsu 2018; Qu and Zhuo 2021]. Most procedures focusing on the likelihood ratio
test approach currently available are only able to deal with settings where the null hypothesis is
that of a linear model (i.e., H0 : M0 = 1) and the alternative hypothesis is a MSM with two regimes
(i.e., H1 : M0 +m = 2, where M0 = m = 1). The exception is Kasahara and Shimotsu (2018) which
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study the asymptotic distribution of the likelihood ratio test statistic when the null hypothesis is
of a model with M0 regimes and the alternative hypothesis is that of a model with M0 + 1 regimes
where M0 ≥ 1 (and m = 1). Interestingly, in this setting, the authors establish the asymptotic
validity of the parametric bootstrap procedure (see Proposition 21 of Kasahara and Shimotsu 2018).
Qu and Zhuo (2021) also show the asymptotic validity of the parametric bootstrap for specific data
generating processes in the more simple setting where we would like to compare a linear model
to a MSM with two regimes. At the same time, others have proposed alternative test procedures
based on moments of least-squares residuals (see Dufour and Luger 2017), parameter stability (see
Carrasco, Hu, and Ploberger 2014), or other moment-matching conditions (see Antoine et al. 2022).

In Carrasco, Hu, and Ploberger (2014), the authors are interested in the case of testing a linear
model against a MSM with only two regimes. This is because, as a test of parameter stability, the
null hypothesis must always be that of a linear model and in this case the test only has good power
against local alternatives. As a result, this test cannot be used to compare different general MSMs
(with M0 > 1). Other limitations of the test procedures mentioned so far (with the exception of
those proposed in Dufour and Luger (2017)) is that they are aimed at establishing an asymptotic
distribution of the test statistic, so they depend on assumptions needed to obtain asymptotic results
which may be restrictive in many cases. For example, a common assumption is that the process
studied is stationary with Gaussian errors. Within the likelihood ratio test literature, it is also
common to assume a concentrated parameter space, in order to avoid the parameter boundary
problem. On the other hand, Dufour and Luger (2017) propose a valid test for the null hypothesis
of a linear model against an alternative of a MSM with two regimes, which relies on Monte Carlo
test techniques. Specifically, the authors propose four test statistics based on the moments of the
least-squares residuals, which are meant to capture different characteristics of a two-component
mixture distribution. Approximate marginal p-values are computed for each moment specific test
statistic and are combined using either the minimum or the product. This leads to a single test
statistic that is free of nuisance parameters when there are no autoregressive lags in the model (i.e.,
HMMs). When autoregressive lags are included in the model, the test procedure is no longer free of
nuisance parameters. In this case, the authors use the Local Monte Carlo (LMC) and Maximized
Monte Carlo (MMC) test procedure described in Dufour (2006).

In this paper, we also use the Monte Carlo procedures described in Dufour (2006) to deal with
the issues plaguing conventional testing procedures discussed so far, but in a likelihood ratio test
setting. This also allows us to deal with nuisance parameters in the distribution of the likelihood
ratio test statistic. Specifically, we propose the Local Monte Carlo Likelihood Ratio Test (LMC-
LRT) and the Maximized Monte Carlo Likelihood Ratio Test (MMC-LRT), which can be used
to identify the number of regimes in both MSMs and HMMs in the more general case where we
would like to compare models with M0 regimes under the null hypothesis against models with
M0 + m regimes under the alternative, where here both M0 ≥ 1 and m ≥ 1. Since MSMs are
more general than HMMs in the sense that we can recover a HMM by simply setting the number
of autoregressive lags to zero, we focus on MSMs throughout this study but the results of the
tests proposed here are also applicable to HMMs. An important contribution of the MMC-LRT
proposed here is that it is an exact test for determining the number of regimes in a MSM and is valid
both in finite samples and asymptotically. Further, since we are not working with the asymptotic
distribution of the test statistic, we can also relax some of the assumptions typically required to
obtain asymptotic results. There are four main advantages of using such a framework. The first
is that the violation of the regularity conditions needed to drive an asymptotic distribution are no
longer problematic. This means that we can consider the full nuisance parameter space rather than
a concentrated parameter space as in Qu and Zhuo (2021) and Kasahara and Shimotsu (2018).
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The second advantage is that this allows us to determine the appropriate number of regimes even
when dealing with a non-stationary process Yt. The third advantage is that we can deal with
cases where the asymptotic distribution is more complicated to obtain or even infeasible, such as
specific cases where the errors are non-Gaussian. Finally, the fourth advantage is that LMC-LRT
and MMC-LRT can be applied to multivariate settings (e.g., Markov-switching VAR models or
multivariate HMM). It is also worth noting that non-stationary processes, non-Gaussian errors and
multivariate settings have not received a lot of attention in the literature on hypothesis testing for
the number of regimes in MSMs. Simulation results indicate that both the LMC-LRT and MMC-
LRT procedures presented here are able to control the probability of a type I error as suggested
by the theory proposed in Dufour (2006), and have better power than other tests proposed in the
literature and considered here for comparison in the univariate setting. We are also the first to
tabulate such simulation results in the multivariate setting. Another noteworthy contributions of
this paper includes tabulating results of the test proposed by Dufour and Luger (2017) when the
process Yt is non-stationary. All tests results presented in this paper are obtained using the R
package MSTest described in a companion paper Rodriguez Rondon and Dufour (2022).

The next sections are structured as follows. Section 2 reviews the Markov-switching autoregres-
sive model we are interested in and briefly discusses estimation procedures. Section 3 introduces our
testing methodology and reviews the testing procedures we use for comparison purposes. Section
4 shows and discusses simulation results for the size and power of the proposed testing proce-
dures. Section 5 presents an empirical example where we use the testing procedures proposed here
to identify the number of regimes when modelling U.S. GNP growth as originally considered in
Hamilton (1989) and Hansen (1992). Specifically, we consider the sample from 1951Q2-2010Q4
used by Carrasco, Hu, and Ploberger (2014) and Dufour and Luger (2017) and also consider an
extended sample covering the period of 1951Q2-2022Q3. When using this extended sample, we
find that three regimes are needed for this sample. This result confirms evidence about the Great
Moderation in the sense that two regimes have positive growth but experience a change in variance
in the mid-80s. Specifically, we find that there is a lower variance regime starting after the mid-
80s. The third regime that is consistent with recessionary periods as it matches NBER suggested
recession dates. Finally, section 6 provides concluding remarks.

2 Markov-switching Model

In general, a MSM can be expressed as

yt = xtβ + ztδst + σstεt (1)

In a univariate setting, yt is a scalar, xt is a fixed (or predetermined) (1×n) vector of variables who’s
coefficient do not depend on the latent Markov process St, zt is a (1× ν) vector of variables who’s
coefficient do depend on the Markov process St and εt is the errors process, which for example may
be disturbed as a N (0, 1) and is multiplied by the standard deviation σst which may also depend
on the Markov process St or remain constant throughout (i.e., σ). For our testing procedures,
other distributions on the error processes may also be assumed but for simplicity, here we assume
normally distributed errors. Similarly, if interested in a multivariate setting, we could allow yt to be
a (1× q) vector (i.e., yt = (y1,t, . . . , yq,t)) and εt also a (1× q) vector that is for example distributed
as N (0,Σst) or N (0,Σ) if the variance-covariance matrix does not depend on the latent Markov
process St. In order to have a MSM, as described above, lags of yt must be included in either xt or
zt depending on whether we want to allow the autoregressive coefficients to depend on the regimes.
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This general setting also allows us to consider a trend function within xt or zt. A HHM can also be
recovered by considering only a constant term in zt and excluding xt. For the sake of exposition, in
the following we consider a MSM where only the mean and the variance may be subject to change
and autoregressive coefficient remain constant. That is, xt = (yt−1, . . . , yt−p) and zt = 1. We also
reformulate the model to make the dependence on the mean, µst , more explicit. This results in the
following model

yt = µst +

p∑
k=1

φk(yt−k − µst−k
) + σstεt (2)

where we can see that the mean and variance of the observed process yt are governed by the latent
Markov chain process St. As described in Hamilton (1994), for a model with M regimes, the
one-step transition probabilities can be gathered into a transition matrix such as

P =

 p11 . . . pM1
...

. . .
...

p1M . . . pMM


where for example pij = P (St = j|St−1 = i) is the probability of state i being followed by state
j. If for example, if we consider a model with only two regimes, we only need a (2× 2) transition
matrix to summarize the transition probabilities P:

P =

[
p11 p21

p12 p22

]
In either case, the columns of the transition matrix must sum to one in order to have a well defined
transition matrix (i.e,

∑M
j=1 = pij = 1). We can also obtain the ergodic probabilities, π = (π1, π2)′,

which are given by

π1 =
1− p22

2− p11 − p22
π2 = 1− π1 (3)

in a setting with two regimes or more generally, for any number of M regimes we could use

πππ = (A′A)−1A′eN+1 & A =

[
IM −P

111′

]
where eM+1 is the (M + 1)th column of IM+1.

Continuing with the example of a MSM such as the one given by equation (2) and where
St = {1, 2} (i.e., M = 2 regimes), the sample log likelihood conditional on the first p observations
of yt is given by

LT (θ) = logf(yT1 |y0
−p+1; θ) =

T∑
t=1

logf(yt|yt−1
−p+1; θ) (4)

where θ = (µ1, µ2, σ1, σ2, φ1, . . . , φp, p11, p22) and

f(yt|yt−1
−p+1; θ) =

2∑
st=1

2∑
st−1=1

· · ·
2∑

st−p=1

f(yt, St = st, St−1 = st−1, . . . , St−p = st−p|yt−1
−p+1; θ) (5)
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and more specifically

f(yt, St = st, . . . , St−p = st−p|yt−1
−p+1; θ) =

P (S∗t = s∗t |yt−1
−p+1; θ)√

2πσ2
st

× exp
{−[yt − µst −

∑p
k=1 φk(yt−k − µst−k

)]2

2σ2
st

}
(6)

where we let

S∗t = s∗t if St = st, St−1 = st−1, . . . , St−p = st−p

and P (S∗t = s∗t |yt−1
−p+1; θ) is the probability that this occurs.

Typically, MSMs are estimated using the Expectation Maximization (EM) algorithm (see Demp-
ster, Laird, and Rubin 1977), Bayesian methods or through the use of the Kalman filter if using
the state-space representation of the model. In very simple cases, MSMs can be estimated using
Maximum Likelihood Estimation (MLE). However, since the Markov process St is latent and more
importantly the likelihood function can have several modes of equal height in addition to other un-
usual features that can complicate estimation by MLE this is not often used. In this study, we use
the EM algorithm when estimating MSMs. It is worth noting that in practice, however, empirical
estimates can sometimes be improved by using the results of the EM algorithm as initial values
in a Newton-type of optimization algorithm. This two-step estimation procedure is used to obtain
results presented in the empirical section of this paper. We omit a detailed explanation of the EM
algorithm as our focus is on the hypothesis testing procedures proposed here. For the interested
reader, the estimation of a Markov switching model via the EM algorithm is describe in detail in
Hamilton (1990) and Hamilton (1994) and the in Krolzig (1997) for the a Markov-switching VAR
model.

3 Monte Carlo likelihood ratio tests

In this section, we introduce the Maximized Monte Carlo likelihood ratio test (MMC-LRT) and the
Local Monte Carlo likelihood ratio test (LMC-LRT) obtained assuming normally distributed errors
and a model of the form (2). For simplicity, we use an example where we are interested by a null
hypothesis of linear model (i.e., only M0 = 1 regime) and an alternative hypothesis of M0 +m = 2
regimes. However, it is easy to see this methodology can be extended to more general cases with
M0 ≥ 1 and m ≥ 1. As in Garcia (1998) and the parametric bootstrap procedure describe in Qu
and Zhuo (2021) and Kasahara and Shimotsu (2018), we assume that the null hypothesis depends
only on the mean, variance and autoregressive coefficients.

The LRT approach requires that we estimate the model both under the null and alternative
hypothesis, so that we can obtain the log-likelihoods for each model. The log-likelihood for the
model under the alternative (and under the null hypothesis if M0 > 1) is given by (4) - (6):

LT (θ1) = log f(yT1 | y0
−p+1; θ1) =

T∑
t=1

log f(yt | yt−1
−p+1; θ1) (7)

where
θ1 = (µ1, µ2, σ1, σ2, φ1, . . . , φp, p11, p22)′ ∈ Ω . (8)
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The subscript of 1 underscores the fact that θ1 is the parameter vector under the alternative
hypothesis. The set Ω satisfies any theoretical restrictions we may wish to impose on θ1 [such as
σ1 > 0 and σ2 > 0]. On the other hand, the log-likelihood under the null hypothesis (M0 = 1) is
given by

L0
T (θ0) = log f(yT1 | y0

−p+1; θ0) =
T∑
t=1

log f(yt | yt−1
−p+1; θ0) (9)

where

f(yt | yt−1
−p+1; θ0) =

1√
2πσ2

exp

{
−[yt − µ−

∑p
k=1 φk(yt−k − µ)]2

2σ2

}
, (10)

θ0 = (µ, σ2, φ1, . . . , φp)
′ ∈ Ω̄0. (11)

Note that Ω̄0 has lower dimension than Ω. The null and alternative hypotheses can be written as:

H0 : δ1 = δ2 = δ for some unknown δ = (µ, σ) , (12)

H1 : (δ1, δ2) = (δ∗1 , δ
∗
2) for some unknown δ∗1 6= δ∗2 , (13)

where δ1 = (µ1, σ1) and δ2 = (µ2, σ2). Clearly, H0 is a restricted version of H1: for each θ0 ∈ Ω̄0,
we can find θ1 such that

L0
T (θ0) = LT (θ1) , θ1 ∈ Ω0, (14)

where Ω0 is the subset of vectors θ1 ∈ Ω such that θ1 satisfies H0. Under H0, the vector θ0 ∈ Ω̄0 is
a nuisance parameter: the null distribution of any test statistic for H0 depends on θ0 ∈ Ω̄0. In this
problem, the null distribution of the test statistic is in fact completely determined by θ0.

The likelihood ratio statistic for testing H0 against H1 can then written as

LRT = 2[L̄T (H1)− L̄T (H0)] (15)

where
L̄T (H1) = sup{LT (θ1) : θ1 ∈ Ω} , (16)

L̄T (H0) = sup{L0
T (θ0) : θ0 ∈ Ω̄0} = sup{LT (θ1) : θ1 ∈ Ω0} . (17)

The null distribution of LRT depends on the parameter θ0 ∈ Ω̄0. Since the model is parametric,
we can generate a vector N i.i.d replications of LRT for any given value of θ0 ∈ Ω̄0:

LR(N, θ0) := [LR
(1)
T (θ0), . . . , LR

(N)
T (θ0)]′, θ0 ∈ Ω̄0 . (18)

Let us denote LR
(0)
T := LRT the test statistic based in the observed data. Given the model

considered, we can assume [as in (4.10) of Dufour (2006)] that:

the random variables LR
(0)
T , LR

(1)
T (θ0), . . . , LR

(N)
T (θ0) are exchangeable for some

θ0 ∈ Ω̄0, each with distribution function F [x | θ0] . (19)

Set

F̂N [x | θ0] := F̂N [x; LR(N, θ0)] =
1

N

N∑
i=1

I[LR
(i)
T (θ0) ≤ x] (20)

ĜN [x | θ0] := ĜN [x; LR(N, θ0)] = 1− F̂N [x; LR(N, θ0)] (21)
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where I(C) := 1 if condition C holds, and I(C) = 0 otherwise. F̂N [x | θ0] is the sample distribution
of the simulated statistics, and ĜN [x | θ0] is the corresponding survival function. Then, the Monte
Carlo p-value is given by

p̂N [x | θ0] =
NĜN [x | θ0] + 1

N + 1
. (22)

Alternatively, using the relationship

RLR[LR
(0)
T ; N ] = NF̂N [x; LR(N, θ0)]

=
N∑
i=1

I[LR0
T ≥ LRiT (θ0)] (23)

we can define a Monte Carlo p-value as

p̂N [x | θ0] =
N + 1−RLR[LR

(0)
T ; N ]

N + 1
(24)

where, as can be seen from (23), RLR[LR
(0)
T ;N ] simply computes the rank of the test statistic using

the observed data within the generated series LR(N, θ0). As discussed in Dufour (2006), a critical
region with level α is then given by

sup
θ0∈Ω̄0

p̂N [LR
(0)
T | θ0] ≤ α (25)

More precisely, if (N + 1)α is an integer, we have

P
[
sup{p̂N [LR

(0)
T | θ0] : θ0 ∈ Ω̄0} ≤ α

]
≤ α (26)

under the null hypothesis: we get a valid test with level α for H0; see Proposition 4.1 in Dufour
(2006). In the present case, we call this procedure the Maximized Monte Carlo Likelihood Ratio
Test (MMC-LRT).

The parameter space, however, can be very large. Specifically, it grows as the number of
autoregressive components increases and as the number of regimes increases. Additionally, the
solution may not be unique in the sense that the maximum p-value may be obtained by more than
one parameter vector. For this reason, numerical optimization methods that do not depend on the
use of derivatives are recommended to find the maximum Monte Carlo p-value within the nuisance
parameter space. Such algorithms include: Generalized Simulated Annealing, Genetic Algorithms,
and Particle Swarm [see Dufour 2006; Dufour and Neves 2019].

In order to facilitate optimization [as described in Dufour (2006)], it is also possible to search
within a smaller consistent set of the parameter space CT . A consistent set can be defined using
the consistent point estimate. For example, let θ̂0 be the consistent point estimate of θ0. Then, we
can define

CT = {θ0 ∈ Ω̄0 : ‖ θ̂0 − θ0 ‖ < c} (27)

where c is a fixed positive constant that does not depend on T and ‖·‖ is the Euclidean norm in Rk.
An empirically interesting consistent set that we consider in this study is C∗T = CCIT ∪ CεT where

CCIT = {θ0 ∈ Ω̄0 : ‖ θ̂0 − θ0 ‖ < 2× S.E.(θ̂0)} (28)

CεT = {θ0 ∈ Ω̄0 : ‖ θ̂0 − θ0 ‖ < ε} (29)
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CCIT is defined by a 95% confidence interval of the consistent point estimates, while CεT is defined
using a fixed constant ε that does not depend on T . The union of these two sets allows us to
consider values that may be outside the confidence interval of the autoregressive parameters and the
transition probabilities, depending on the choice of ε, while also constraining the values considered
for the mean and the variances to a reasonable region.

Finally, we can also define CT to be the singleton set CT = {θ̂0}, which gives us the Local Monte
Carlo Likelihood Ratio Test (LMC-LRT). Here, the consistent set includes only the consistent point
estimate θ̂0. Generic conditions for the asymptotic validity of such a test are discussed in section
5 of Dufour (2006), but these are more restrictive than those for the MMC-LRT procedure. The
LMC test can be interpreted as the finite-sample analogue of the parametric bootstrap. To reflect
this, we replace F̂N [x | θ0] with F̂TN [x | θ0] = F̂N [x;LRT (N, θ0)] and ĜN [x | θ0] with ĜTN [x | θ0] =
ĜN [x;LRT (N, θ0)] where the subscript T is meant to allow the test statistics and functions to
change based on increasing sample sizes. As a result, the Monte Carlo p-value is given by

p̂TN [x | θ0] =
NĜTN [x | θ0] + 1

N + 1
(30)

The asymptotic validity in this case refers to the estimate θ̂0 converging asymptotically to the true
parameters in θ0 as the sample size increases. This is not related to the asymptotic validity of the
critical values as desired in Hansen (1992), Garcia (1998), Cho and White (2007), Qu and Zhuo
(2021) and Kasahara and Shimotsu (2018). Specifically, like the parametric bootstrap, the LMC
procedure is only valid asymptotically as T →∞ but, unlike the parametric bootstrap, we do not
need a large number of simulations (i.e., N →∞), since we do not try to approximate the asymp-
totic critical values nor assume that the distribution of the test statistic converges asymptotically
but rather work with the critical values from the sample distribution F̂ [x | θ0]. This allows the pro-
cedure to be computationally efficient in the sense that we will not need to perform a large number
of simulations with the aim of obtaining asymptotically valid critical values. In fact, as can be seen
from equations (24) and (30), the number of replications N is taken into account in the calculation
of the p-value both in the numerator and the denominator so that it essentially remains fixed as N
increases. As discussed in Dufour (2006), building a test with level α = 0.05 requires as few as 19
replications but using more replications can increase the power of the test. For this reason, in our
simulations results we use N = 99 for our Monte Carlo procedure as in Dufour and Khalaf (2001)
and Dufour and Luger (2017) though it is also possible to use the procedure described in Davidson
and MacKinnon (2000) to determine the optimal number of simulations to minimize experimental
randomness and loss of power.

4 Simulation Evidence

We begin by reviewing the moment-based test proposed by Dufour and Luger (2017) and the pa-
rameter stability test proposed by Carrasco, Hu, and Ploberger (2014), which we use for comparison
in the univariate setting where we consider the null hypothesis of one regime (linear model) against
the alternative hypothesis of two regimes because this is the only setting where these tests are
applicable. Simulation results for the two Monte Carlo likelihood ratio tests proposed here are also
shown below and cover more complicated DGPs with two regimes under the null hypothesis and
multivariate settings.
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4.1 Moment-based Tests for Markov-switching

Here, we review the test proposed by Dufour and Luger (2017). This test avoids some of the
statistical issues described above for likelihood ratio type tests by using moments of the residuals
aimed at capturing characteristics of a mixture normal distribution. Additionally, their test is
less costly computationally in comparison to the test proposed by Carrasco, Hu, and Ploberger
(2014) and the likelihood ratio-based tests mentioned previously including the one proposed here.
This is because it only requires estimating the model under the null hypothesis. It also allows the
econometrician to perfectly control the level of the test through the use of Monte Carlo (MC) test
methods discussed in Dufour (2006).

As previously mentioned, this procedure is aimed at detecting the presence of two regimes and
so, in their setup the parameters µst and σst shown in (2) can be given as

µst = µ1I{St = 1}+ µ2I{St = 2} σst = σ1I{St = 1}+ σ2I{St = 2} (31)

Hence the hypothesis to be tested can be formulated as

H0 : µ1 = µ2 & σ1 = σ2

H1 : µ1 6= µ2 & σ1 6= σ2
(32)

An important distinction from other testing procedures however, is that, like Cho and White (2007)
they assume that under the alternative hypothesis the observed data yt is governed by a mixture of
normal distributions weighted by the ergodic proprieties of the markov-chain. That is, under the
alternative yt is given by

yt = π1N(µ1, σ
2
1) + π2N(µ2, σ

2
2) (33)

where π1 and π2 are given by (3).

To test the the hypothesis of a linear model against that of a AR-MS model, they develop
test statistics that are based on the moments of the least-square residuals of autoregressive models.
More Specifically, they focus on the mean, variance, skewness and excess kurtosis of the least-square
residuals. To do this, they first transform the series to correct for the autoregressive parameters
which do not change according to the regime and get

zt = yt −
p∑
i=1

φiyt−i (34)

and then obtain the residuals ε̂t = zt − z̄t. From here, the residual moments are calculate as

M(ε̂) =
|m2 −m1|√
s2

1 + s2
2

(35)

where, m1 =
ΣT

t=1ε̂t1[ε̂t<0]

ΣT
t=11[ε̂t<0]

, m2 =
ΣT

t=1ε̂t1[ε̂t>0]

ΣT
t=11[ε̂t>0]

, s2
1 =

ΣT
t=1(ε̂t−m1)21[ε̂t<0]

ΣT
t=11[ε̂t<0]

and s2
2 =

ΣT
t=1(ε̂t−m2)21[ε̂t>0]

ΣT
t=11[ε̂t>0]

V (ε̂) =
ϑ2(ε̂)

ϑ1(ε̂)
(36)

where, ϑ1 =
ΣT

t=1ε̂t
2
1[ε̂t

2<σ̂2]

ΣT
t=11[ε̂t

2<σ̂2]
, ϑ2 =

ΣT
t=1ε̂t

2
1[ε̂t

2>σ̂2]

ΣT
t=11[ε̂t

2>σ̂2]
and σ̂2 = T−1ΣT

t=1ε̂t
2

S(ε̂) =

∣∣∣∣∣ ΣT
t=1ε̂t

3

T (σ̂2)3/2

∣∣∣∣∣ (37)
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and

K(ε̂) =

∣∣∣∣∣ΣT
t=1ε̂t

4

T (σ̂2)2
− 3

∣∣∣∣∣ (38)

It is important to note that if we consider (34) as our series of interest, then these test statistics
do not depend on any nuisance parameters since they can be obtained strictly from the vector of
standardized residuals ε̂/σ̂ and as such they are pivotal statistics. The testing procedure involves
calculating these test statistics from the observed data, obtaining the sample distribution F̂ (x) by
simulating the test statistic under the null hypothesis and then computing the empirical p-values
for each moment.

From here, we can obtain individual MC p-values for each test statistic but must find a way to
combine them. One approach would be to set the level αi for each test such that the the overall
level α =

∑
i α is exactly equal to the desired level of 0.05. Alternatively, there are two different

methods proposed in Dufour and Luger (2017) for combining independent test statistics that are
used to combine the p-values. The idea is to essentially treat the combined p-value as a test statistic
which requires a second layer of simulations to obtain a combined p-value. The first step is to use
the approximate distribution functions taking the simple logistic form:

F̂ [x] =
exp(γ̂0 + γ̂1x)

1 + exp(γ̂0 + γ̂1x)
(39)

where γ̂0 and γ̂1 are estimated by nonlinear least-squares (NLS). Then the the approximate p-value
of, for example M(ε̂), is computed as ĜM [M(ε̂)] = 1− F̂M [M(ε̂)]. Once we have done this for each
test statistic, they can be combined in one of two ways. The first method is based on the min of
the p-values and was initially suggested by Tippett et al. (1931) and Wilkinson (1951). Here, the
test statistic becomes,

Fmin(ε̂) = 1−min{ĜM [M(ε̂)], ĜV [V (ε̂)], ĜS [S(ε̂)], ĜK [K(ε̂)]} (40)

where, ĜM [M(ε̂)] = 1− F̂M [M(ε̂)] is the Monte Carlo p-value of M(ε̂) described above. The second
method of combining the test statistics involves taking their product. This method of combining
test statistics was suggested by Fisher (1932) and Pearson (1933). In this case the the test statistic
becomes,

F×(ε̂) = 1− {ĜM [M(ε̂)]× ĜV [V (ε̂)]× ĜS [S(ε̂)]× ĜK [K(ε̂)]} (41)

Dufour et al. (2004) and Dufour, Khalaf, and Voia (2014) provide further discussion of these
methods of combining test statistics for the interested reader. Finally, the Monte Carlo p-value of
the combined statistics is given by

GFmin [Fmin(ε̂);N ] =
N + 1−RFmin [Fmin(ε̂);N ]

N
(42)

and

GF× [F×(ε̂);N ] =
N + 1−RF× [F×(ε̂);N ]

N
(43)

where RFmin and RF× are the ranks of Fmin(ε̂) and F×(ε̂) in Fmin(η̂1), ..., Fmin(η̂N−1) and F×(η̂1),
...,F×(η̂N−1) respectively, when ordered where η̂ = η − η̄ and η ∼ N(0, IT ).

The result is four test procedure. Specifically: LMCmin, LMCprod, MMCmin, and MMCprod. An
advantage of these procedure is that they deal with less nuisance parameters than the LMC-LRT
and MMC-LRT procedures proposed here. However, unlike LMC-LRT and MMC-LRT, they can
only be used to compare a linear model under the null hypothesis to a MSM with two regimes
under the alternative.
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4.2 Optimal test for Regime Switching:

Carrasco, Hu, and Ploberger (2014) (CHP) proposes a test that they describe as an optimal test
for the consistency of parameters in random coefficient and markov-switching models. Specifically,
their testing procedure is more generally suited to detect parameter heterogeneity but includes the
AR-MS model as a special case. As previously mentioned, an advantage of this method is that it
only requires estimating the model under the null hypothesis. Another noteworthy advantage of
this test is that it can also be applied to test Markov-switching GARCH models. Furthermore, the
authors appeal to the Neyman-Pearson lemma to prove the optimality of their test and show that
it is asymptotically locally equivalent to the likelihood ratio test.

The authors formulate the hypothesis in the following way:

H0 : θt = θ0

H1 : θt = θ0 + ηt
(44)

where the switching variable ηt is unobservable, stationary and may depend on nuisance parameters
β. Their test makes use of the second derivatives of the log-likelihood and the outer products of
the scores as in the information matrix test with the addition of an extra term, which captures the
serial dependence of the time-varying coefficients. This means that the form of the test depends on
the latent process ηt only through its second-order properties. Additionally, the distribution of ηt
is assumed to exist even under the null, but does not play a role with regards to the distribution of
the data (yT , yT−1, yT−2, ...y1) under the null. That is, under the null, they are mutually exclusive.

In order to deal with the presence of nuisance parameters, the authors propose two alternatives.
The first is a Sup-type test as in Davies (1987). They set ηt = chSt, where c is a scalar specifying
the amplitude of the change, h a vector specifying the direction of the alternative and St is a
Markov-chain, which follows an autoregressive process such as St = ρSt−1 + et, where et is i.i.d.
U[-1,1] and −1 < ρ < 1 so that St is bounded by support (−1/(1 − |ρ|), 1/(1 − |ρ|) and has zero
mean. Letting β = (c2, h′, ρ′) be our vector of nuisance parameters, we can write

µ2,t(β, θ) =
1

2
c2h′[(

∂lt
∂θ∂θ′

+ (
∂lt
∂θ

)(
∂lt
∂θ

)′) + 2
∑
s<t

ρ(t−s)(
∂lt
∂θ

)(
∂lt
∂θ

)′]h (45)

which allows us to get the expression

supTS = sup
{h,p:||h||=1,ρ<ρ<ρ̄}

=
1

2
(max(0,

Γ∗T√
ε̂∗′ ε̂∗

))2 (46)

where Γ∗T = Γ∗T (β, θ) =
∑
t
µ∗2,t(β, θ)/

√
T and µ∗2,t(β, θ) = µ2,t(β, θ)/c

2 and ε̂∗ are the residuals from

regressing µ∗2,t(β, θ) on l
(1)
t (θ̂) so that Γ∗T and ε̂∗ are not dependent on c2. Here, the notation l

(k)
t

denotes the kth derivative of the log-likelihood with respect to the parameters θ.

This methodology involves bootstrapping over the distributions of the nuisance parameters. As
a result, one must choose a prior distribution for the nuisance parameters. The most commonly used
distribution in this case is the uniform distribution, but since the parameter c2 is not necessarily
bounded from above, a uniform distribution may not always be appropriate. As a result, CHP also
suggest using an Exponential-type test as in Andrews and Ploberger (1994). This statistic is given
by:

expTS =

∫
{ρ≤ρ≤ρ̄,||h||<1}

Ψ(h, ρ)dρdh (47)
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where

Ψ(h, ρ) =


√

2πexp[1
2(

Γ∗T√
ˆε∗′ ε̂∗
− 1)2]Φ(

Γ∗T√
ˆε∗′ ε̂∗
− 1) if ε̂∗′ ε̂∗ 6= 0.

1 otherwise.
(48)

The authors also derive the asymptotic distribution of both test statistics they propose. Their
test has since been used in Hamilton (2005), Warne and Vredin (2006), Kahn and Rich (2007), Hu
and Shin (2008), Morley and Piger (2012) and Dufrénot, Mignon, and Péguin-Feissolle (2011).

4.3 Simulation Results

Now, we present tables summarizing the empirical size and power (in percentage) of the two tests
proposed in this paper. We also provide the same empirical results for the test procedures described
previously in this section for comparison. In what follows, the nominal level is set to be α = 0.05
and results are based on 1000 replications of the data generating process (DGP). Throughout, we
will consider a simple AR(1) model given by

yt = µst + φ1(yt−1 − µst−1) + σstεt (49)

where εt ∼ N (0, 1), such that only the mean and variance are governed by the Markov process St.
It is understood that the LMC-LRT, supTS, and expTS procedures should perform better in large
sample sizes since they are asymptotic tests. However, many economic applications using quarterly
observations are limited to as few as 100 to 200 observations so in the following we consider these
sample sizes to get an idea of the finite sample performance of these tests. sizes to get an idea of
the finite sample performance of these tests. Also, whenever considering a Maximized Monte Carlo
test, we use the set C∗T = CCIT ∪C0.1

T . All results presented here were obtained using the R-package
MSTest described in the companion paper Rodriguez Rondon and Dufour (2022).

We begin by considering a null hypothesis of a linear AR(1) model (i.e, H0 : M0 = 1) and an
alternative hypothesis of a MSM with one lag and two regimes (i.e, H0 : M0 +m = 2).

Table 1: Empirical size of test when H0 : M0 = 1 and H1 : M0 +m = 2
Test φ = 0.1 φ = 0.9 φ = 1.0

T=100 T=200 T=100 T=200 T=100 T=200
LMC-LRT 5.8 5.3 4.9 4.8 4.9 4.9
MMC-LRT 0.4 0.5 0.9 0.9 0.9 0.6
LMCmin 4.4 5.9 4.7 4.7 4.2 4.8
LMCprod 5.3 5.2 4.9 5.1 4.9 4.3
MMCmin 0.2 0.2 0.2 0.7 0.2 0.0
MMCprod 0.1 0.2 0.4 0.8 0.2 0.5
supTS 4.8 5.1 6.0 4.5 - -
expTS 6.8 6.2 5.4 6.9 - -

Table 1 reports the empirical size of the tests (in percentage) when φ = 0.1 in the first two columns,
when φ = 0.9 in the next two columns, and when φ = 1.0 in the last two columns. For each value
of φ we have a sample size of T = 100 or T = 200. As suggested by the theory laid out in
Dufour (2006), the maximized Monte Carlo tests has empirical rejection frequencies ≤ 5% under
the null hypothesis. The local Monte Carlo based tests, LMC-LRT, LMCmin, and LMCprod, also
appear perform very well with a rejection frequency of approximately 5% even in finite samples.
The simulation results for the supTS and expTS show that these tests also appear to control the
empirical size well but less so than the Monte Carlo based tests as they have a small degree of
over-rejection in some cases. This however, should be expected from an asymptotic test given that
the sample sizes are fairly small.
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Table 2: Empirical power of test when H0 : M0 = 1 and H1 : M0 +m = 2
Test (p11, p22) = (0.9, 0.9) (p11, p22) = (0.9, 0.5)

φ = 0.1 φ = 0.9 φ = 1.0 φ = 0.1 φ = 0.9 φ = 1.0
T=100 T=200 T=100 T=200 T=100 T=200 T=100 T=200 T=100 T=200 T=100 T=200

∆µ = 2, ∆σ = 0
LMC-LRT 48.7 81.2 19.5 33.8 12.5 15.8 34.0 72.3 27.4 48.3 20.8 24.5
MMC-LRT 30.6 51.0 4.6 8.4 4.6 2.4 20.3 41.0 7.1 16.9 4.4 8.1
LMCmin 3.8 5.8 14.6 21.3 18.8 28.5 14.8 29.9 13.5 21.8 16.3 28.4
LMCprod 4.1 5.9 15.2 24.2 19.6 30.8 11.9 22.4 15.0 23.4 16.9 29.0
MMCmin 0.0 0.1 2.8 4.1 1.9 5.0 1.0 3.7 1.4 2.6 1.6 2.1
MMCprod 0.1 0.1 1.9 4.0 2.3 5.2 1.8 3.3 1.2 3.8 1.6 3.6
supTS 24.3 49.9 8.4 12.5 - - 23.8 47.0 11.9 18.2 - -
expTS 15.6 25.4 21.7 32.6 - - 24.6 47.1 22.1 33.5 - -
∆µ = 0, ∆σ = 1
LMC-LRT 66.6 93.4 67.0 94.5 67.2 94.6 55.7 88.7 61.6 88.4 58.4 89.9
MMC-LRT 39.4 69.6 35.6 73.0 31.7 64.7 36.4 69.4 30.7 60.8 29.2 54.5
LMCmin 36.5 64.7 42.5 64.9 39.6 64.4 48.7 69.4 49.4 72.0 45.6 74.4
LMCprod 40.6 66.8 43.3 69.1 42.5 65.3 48.8 70.7 49.5 71.6 47.8 73.2
MMCmin 9.0 30.2 11.2 27.8 10.4 16.3 20.5 44.4 19.7 49.2 16.6 34.3
MMCprod 10.7 31.4 10.8 31.0 7.9 18.0 20.3 42.6 18.8 44.5 16.2 31.2
supTS 32.4 58.0 32.2 67.4 - - 29.9 46.4 30.0 50.3 - -
expTS 40.1 62.6 54.1 84.7 - - 43.9 68.3 52.8 78.6 - -
∆µ = 2, ∆σ = 1
LMC-LRT 83.7 99.4 45.3 77.2 29.5 43.9 83.4 99.4 60.2 88.1 53.1 67.4
MMC-LRT 60.3 90.1 24.0 52.0 14.0 29.5 66.2 91.6 41.5 74.5 29.7 53.7
LMCmin 51.9 81.6 39.9 62.3 35.4 57.7 84.1 99.0 65.9 89.4 63.7 88.2
LMCprod 45.9 74.2 42.5 65.1 38.1 60.9 83.7 99.2 68.5 91.6 63.9 89.9
MMCmin 10.5 39.0 10.2 24.0 8.8 13.7 47.3 50.3 28.1 49.8 23.4 46.7
MMCprod 14.3 37.9 11.8 29.6 9.0 18.1 48.3 44.6 34.9 43.6 28.3 42.1
supTS 72.7 96.2 34.6 62.9 - - 80.8 96.9 53.2 79.8 - -
expTS 75.6 97.0 53.9 77.9 - - 86.6 99.4 75.1 94.7 - -

Table 2 reports the empirical power of the tests (in percentage) when the underlying DGP is a MSM
with two regimes. We consider the same values for φ and T as in Table 1 but this time, in the first
six columns the transition probabilities are (p11, p22) = (0.9, 0.9) resulting in πππ = (0.5, 0.5) and in
the last six columns the transition probabilities are (p11, p22) = (0.90, 0.50) so that πππ = (0.83, 0.17).
The first case corresponds to having spending, on average in the long run, the same amount of
time in both regimes whereas the second case suggests the, on average in the long run, more time
is spent in the first regime over the entire sample. The first panel corresponds to a DGP where
only the mean changes, the second panel a DGP where only the variance changes and the third
bottom panel a DGP where both the mean and the variance are different across regimes. As can
be seen from this tables, the power of the test is lowest when only the mean is subject to change
for all tests. The LMCmin, LMCprod, MMCmin, and MMCprod procedures have the lowest power
when only the mean is subject to change. The LMC-LRT procedure proposed here on the other
hand has comparable power to the supTS and expTS and in some cases even does better. When
the variance is subject to change, all tests have higher power. The LMC-LRT test proposed here
appears to have the highest power in most cases when when the variance is subject to change with
the supTS and expTS having comparable results in some cases even in finite samples. Given that
the MMC-LRT procedure considers a wider set of nuisance parameter values in comparison to the
LMC-LRT procedure, the power of the MMC-LRT is lower than that of the LMC-LRT in all cases.
The same is true when comparing the MMCmin, and MMCprod power results to those of LMCmin

and LMCprod and this should be expected. However, we find that for the set C∗T , the power of the
MMC-LRT procedure proposed here is quite good and in some cases even outperforms the LMCmin

and LMCprod procedures when only the mean is subject to change.

Now we consider a null hypothesis of a linear AR(1) model (i.e, H0 : M0 = 1) and an alternative
hypothesis of a MSM with one lag and three regimes (i.e, H0 : M0 +m = 3).
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Table 3: Empirical size of test when H0 : M0 = 1 and H1 : M0 +m = 3
Test φ = 0.1 φ = 0.9 φ = 1.0

T=100 T=200 T=100 T=200 T=100 T=200
LMC-LRT 4.1 5.2 3.3 4.3 4.4 2.9
MMC-LRT 0.5 1.1 0.5 0.4 0.3 0.0

Table 3 reports the empirical size of the tests (in percentage) in this setting. The DGPs are the
same as those described for table 1 and the results are very comparable as the MMC-LRT procedure
has an empirical rejection frequency ≤ 5% and the LMC-LRT also appear perform very well with
a rejection frequency of approximately 5%.

Table 4: Empirical power of test when H0 : M0 = 1 and H1 : M0 +m = 3
Test (p11, p22, p33) = (0.9, 0.9, 0.9) (p11, p22, p33) = (0.9, 0.5, 0.5)

φ = 0.1 φ = 0.9 φ = 1.0 φ = 0.1 φ = 0.9 φ = 1.0
T=100 T=200 T=100 T=200 T=100 T=200 T=100 T=200 T=100 T=200 T=100 T=200

µ = (−2, 0, 2), σ = (1, 1, 1)
LMC-LRT 41.8 57.4 43.6 70.0 31.7 43.1 82.8 97.1 57.1 85.7 39.9 59.8
µ = (0, 0, 0), σ = (1, 2, 3)
LMC-LRT 69.8 95.9 70.0 94.3 72.2 95.2 85.0 99.1 83.3 99.0 83.6 99.4
µ = (−2, 0, 2), σ = (1, 2, 3)
LMC-LRT 78.9 97.8 50.0 85.1 36.1 46.5 98.3 100 87.6 99.5 75.5 83.3

Table 4 reports the empirical power of the LMC-LRT procedure (in percentage) when the under-
lying DGP is a MSM with three transition probabilities are either (p11, p22, p33) = (0.9, 0.9, 0.9) or
(p11, p22, p33) = (0.9, 0.5, 0.5). The other transition probabilities are given by (1− pii)/2 so that all
columns of the transition matrix sum to 1 as required. As before, the power of LMC-LRT is lowest
when only the mean is subject to change and is much higher when the variances or both the mean
and the variance are subject to change.

The LMCmin, LMCprod, MMCmin, and MMCprod procedures have been omitted in this setting
because those tests are not equipped to consider an alternative MSM with three regimes. Similarly,
the supTS and expTS procedures have also been omitted because, although the null in still a linear
model (i.e, parameter stability), these tests only have power against local alternatives and as a
result do not perform well in this setting.

Now we consider a null hypothesis of a MSM with one lag and two regimes (i.e, H0 : M0 = 2)
and an alternative hypothesis of a MSM with one lag and three regimes (i.e, H0 : M0 + m = 3).
For this comparison, we use the DGP used in Kasahara and Shimotsu (2018). Specifically, for the
Boot-LRT we borrow the results obtained by Kasahara and Shimotsu (2018) which perform 3000
replications and only use N = 199 simulations. We provide results for LMC-LRT to make sure our
results are comparable to those obtained by Kasahara and Shimotsu (2018). Additionally, we only
consider the case where the variance is constant and the mean changes according to the regime.

Table 5: Empirical size of test when H0 : M0 = 2 and H1 : M0 +m = 3
Test (p11, p22) = (0.5, 0.5) (p11, p22) = (0.7, 0.7)

T=100 T=200 T=500 T=100 T=200 T=500
(φ, µ1, µ2, σ) = (0.5,−1, 1, 1)
LMC-LRT 6.80 6.30 4.60 6.00 6.00 4.80
MMC-LRT 0.10 0.20 0.10 0.00 0.10 0.00
Boot-LRT - 7.16 4.43 - 6.07 4.20

Table 5 reports the empirical size of the LMC-LRT, MMC-LRT and Boot-LRT (in percentage)
in this setting for a sample size of T = 100, T = 200, and T = 500. Kasahara and Shimotsu
(2018) do not consider a sample sixe of T = 100 so results for Boot-LRT are not provided for
this case. We find that all test have fairly good finite sample results but that the Boot-LRT and
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LMC-LRT procedures display some over-rejection when the sample size is T = 200 or T = 100
for the LMC-LRT procedure. As mentioned above, these are asymptotic tests in the sense that
we need the sample size to be large so that the consistent estimators of the nuisance parameters
converge in probability to the true parameters. To this point, when the sample size is T = 500,
we see that both tests are better able to control the level of the test with a rejection frequency
closer to 5%. On the other hand, we find that the MMC-LRT procedure still performs as suggested
by the theory and maintains a rejection frequency ≤ 5% when with very small sample sizes. This
highlights the contribution of the MMC-LRT procedure as a valid test procedure both in finite
samples and asymptotically.

Finally, we consider a multivariate setting. Such a setting has, to the best of our knowledge,
not been considered in the literature on hypothesis testing for the number of regimes in MSMs.
Specifically, we consider a null hypothesis with a linear VAR(1) model (i.e, H0 : M0 = 1) and an
alternative hypothesis of a MS-VAR model with one lag and two regimes (i.e, H0 : M0 +m = 2) so
that we may show that the test procedures proposed here are applicable in multivariate settings.
The DGP is a simple bivariate VAR model given by[

y1,t

y2,t

]
=

[
φ11 0.25
−0.25 φ22

] [
y1,t−1

y2,t−1

]
+

[
ε1,t
ε2,t

]
(50)

As before, simulation results are obtained using 1000 replications and N = 99.

Table 6: Empirical Size of Test for Bivariate Markov-Switching VAR
Test φ11 = φ22 = 0.1 φ11 = φ22 = 0.9

T=100 T=200 T=100 T=200
LMC-LRT 5.5 5.3 4.1 4.0

Table 5 reports the empirical size of the LMC-LRT in this setting. We only consider φ = 1.0 and
φ = 0.9 but it would also be of interest to consider a setting where we have a cointegrated system.
The current results suggest that the LMC-LRT procedure performs well and is able to maintain a
rejection frequency of approximately 5% as we would like.

5 Empirical Results

In this section, we use the LMC-LRT procedure proposed in this paper to determine the appropriate
number of regimes for modelling the log difference of U.S. real GNP. Hamilton (1989) first used
U.S. GNP growth data spanning from 1951Q2 to 1984Q4 when proposing the MSM discussed here.
This data was then considered by Hansen (1992), Carrasco, Hu, and Ploberger (2014) and Dufour
and Luger (2017) to showcase their testing procedures. In all three studies, the authors failed to
reject the null hypothesis of linear model when compared to a MSM with two regimes under the
alternative. Carrasco, Hu, and Ploberger (2014) even consider hypothesis testing when only the
mean changes, as in Hamilton 1989 and when both mean and variance are assumed to change
according to the regime. In both cases, the null hypothesis could not be rejected. Carrasco, Hu,
and Ploberger (2014) and Dufour and Luger (2017) also consider a larger sample spanning from
1951Q2 to 2010Q4. In this paper we consider this second sample and a third sample spanning from
1951Q2 to 2022Q3 which includes the recessionary period induced by the COVID-19 pandemic.
Figures A1 and A2 in the appendix section show graphs of the time series of the two samples
considered here.
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Table 7:U.S. real GNP growth MSM estimates
1951Q2 - 2010Q4 1951Q2 - 2022Q3

M=1 M=2 M=3 M=1 M=2 M=3 M=4
µ1 0.763 0.713 0.832 1.517 1.516 1.874 2.008
µ2 - 0.812 0.078 - 2.169 3.575 3.844
µ3 - - 0.826 - - 1.248 1.239
µ4 - - - - - - 1.697
σ2
1 0.783 1.221 1.148 1.48 0.447 1.092 0.470
σ2
2 - 0.177 1.002 - 14.199 65.082 66.963
σ2
3 - - 0.142 - - 0.229 0.231
σ2
4 - - - - - - 1.981
φ1 0.335 0.305 0.252 0.124 0.364 0.292 0.282
φ2 0.124 0.21 0.199 0.202 0.237 0.192 0.181
φ3 -0.083 -0.12 -0.111 0.038 -0.024 -0.053 -0.042
φ4 -0.074 -0.053 -0.067 0.003 -0.042 -0.004 -0.023
p11 - 0.033 0.005 - 0.962 0.005 0.095
p12 - 0.967 0 - 0.038 0 0.009
p13 - - 0.995 - - 0.995 0.897
p14 - - - - - - 0.000
p21 - 0.956 0.187 - 0.42 0.21 0.000
p22 - 0.044 0.813 - 0.58 0.515 0.210
p23 - - 0 - - 0.275 0.276
p24 - - - - - - 0.514
p31 - - 0.951 - - 0.983 0.000
p32 - - 0.043 - - 0.017 0.983
p33 - - 0.006 - - 0 0.000
p34 - - - - - - 0.017
p41 - - - - - - 0.857
p42 - - - - - - 0.000
p43 - - - - - - 0.143
p44 - - - - - - 0.000

Table 7 reports the estimated coefficients for an AR(4) model with the number of regimes ranging
from M = 1 to M = 3 when considering the data up to 2010Q4 and up to M = 4 when considering
the larger sample ending in 2022Q3. In the case of the MSMs we assume both the mean and the
variance are governed by the latent Markov process St. Estimates are obtained using the R-package
MSTest described in Rodriguez Rondon and Dufour (2022). Specifically, we estimate each model
using the Expected Maximization (EM) algorithm with various initial values and keep the estimates
that give the highest log likelihood value. We then use these estimates as initial values in a second
stage where to obtain maximum likelihood estimates. The second column of table 8 reports the
log-likelihood of each model.

Table 8: Determining Number of Regimes
m=1 m=2 m=3

M0 log-like LMC-LRT p-value LMC-LRT p-value LMC-LRT p-value
U.S. GNP Growth, 1951Q2 - 2010Q4

1 -304.23 50.18 0.01 60.67 0.01 - -
2 -279.14 10.49 0.25 - - - -
3 -273.90 - - - - - -

U.S. GNP Growth, 1951Q2 - 2022Q3
1 -454.92 193.02 0.01 250.02 0.01 261.22 0.01
2 -358.41 57.01 0.01 68.20 0.01 - -
3 -329.91 11.19 0.31 - - - -
4 -324.31 - - - - - -

The first column specifies the number of regimes under the null hypothesis. As we move down the
columns towards the right we show the LMC-LRT statistic when the alternative has one additional
regime and the corresponding p-value. The following two columns correspond to an alternative
hypothesis with two additional regimes and the last two columns correspond to an alternative
hypothesis with three additional regimes. For example, the fifth column of the first row gives the
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LMC-LRT statistic when comparing a linear model (i.e., M0 = 1) to a MSM with three regimes
(i.e., M0 + m = 3) and the sixth column reports the corresponding p-value. We find that for the
sample spanning from 1951Q2 to 2010Q4, a MSM with two regimes is appropriate. In Carrasco,
Hu, and Ploberger (2014) and Dufour and Luger (2017) the authors also find that a MSM with two
regimes better explains the data than a model with only one regime as we do here. However, in our
case, we confirm that a MSM with more than two regimes is not appropriate for this sample, which
had not been considered before for U.S. GNP data. Figure A3 in the appendix shows the smoothed
probabilities of both regimes for this sample. We find that the first regime (black) is mostly
consistent with the period from 1951Q2 to the mid 1980s and the second regime (red) is consistent
with the period following the mid 1980s. The exception is that the probability of being in the first
regime increases during the 1990s, early 2000s and during the 2008 recessionary period (i.e., Great
Recession). However, we do not necessarily identify all other recessionary periods as in Hamilton
(1989). This is in part due to the fact that we allow the variance to change whereas, in Hamilton
(1989), the author considers a model where only the mean changes and further their sample only
covers 1951Q2 to 1984Q4, which is within our first regime where out results suggest the variance
is constant. What we see here is that the first regime is consistent with a period of high volatility
whereas the second is marked by low volatility, which explains the return of the first regime during
some recessionary periods within this sample, but not all. Interestingly this result already provides
evidence of the Great Moderation, which states that there was a structural decline in the variance
of many macroeconomic variables occurring in the mid 1980s, as the preferred model suggests there
is a change in variance that occurred in the mid-1980s. When we consider the extended sample
spanning from 1951Q2 to 2022Q3 we find that a MSM with three regimes is appropriate. Figure
A4 in the appendix shows the smoothed probabilities of all three regime for this sample. In this
case the second (red) regime is consistent with severe recessionary periods but misses the recessions
that are comparatively shallow and that occurred before the Great Recession of 2008. The first
regime (black) is again mostly consistent with the period from 1951Q2 to the mid 1980s excluding
recessionary periods and the third regime (blue) is consistent with the period from mid 1980s to
2019 excluding recessionary periods. From table 7 we see that for this model the the variance in
the regime beginning in 1951Q2 and up to mid 1980s is σ2

1 = 1.092 and the variance in the regime
beginning in the mid 1980s and going up to the recession induced by the COVID-19 pandemic is
σ2

3 = 0.229 and so we have a decrease in variance in non-recessionary state after the mid 1980s
which further confirms evidence about the Great Moderation. Like Gadea, Gómez-Loscos, and
Pérez-Quirós (2018) and Gadea, Gómez-Loscos, and Pérez-Quirós (2019) we also find that the low
volatility period continues after the Great recession of 2008 in both samples. However, our new
extended sample provides some evidence that the high volatility period makes a return after this
recent recession, which has not been documented for U.S. GNP data so far. The second panel of
figure A3 and A4 show the smoothed probabilities of each regime when considering an additional
regime over the number suggested by our testing procedure. In both cases, the additional regime
seems to pick up some of the comparatively more shallow recessions.

6 Conclusion

We have shown how to use the Monte Carlo procedures described in Dufour (2006) for the setting
of a likelihood ratio test for MSMs. In doing so, we propose the Maximized Monte Carlo Likelihood
Ratio Test (MMC-LRT) and the Local Monte Carlo Likelihood Ratio Test (LMC-LRT) that can be
used to determine the number of regimes in MSMs and in HMMs. Specifically, the tests proposed
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here are general enough where they can deal with settings where we are interested in comparing
models with M0 regimes under the null hypothesis against models with M0 +m regimes under the
alternative, where here both M0,m ≥ 1. Further, they can also be applied to settings where we
have a non-stationary process, a process with non-Gaussian errors, and multivariate settings. To
the best of our knowledge, we are the first to consider hypothesis testing of multivariate MSMs.
Although we work with the sample distribution of the test statistic, asymptotic results have not
been provided for LRT in a multivariate setting which brings forward an interesting direction for
future research. The simulation results suggest that both versions of the Monte Carlo likelihood
ratio test are able to control the level of the test very well. An important contribution is the
MMC-LRT, which performs well and maintains a rejection frequencies ≤ α in all cases as suggested
by the theory proposed in Dufour (2006) and is an identification-robust procedure that is valid
in finite samples and asymptotically. Further, simulation results also suggest both test have good
power. Specifically, the LMC-LRT has comparable or better power than the supTS and expTS tests
while both the LMC-LRT and MMC-LRT outperform their moment-based counterparts. Finally,
we use the LMC-LRT to determine the appropriate number of regimes for modelling real U.S.
GNP growth and confirm that a model with two regimes best described data spanning 1951Q2 to
2010Q4 and find that a model with three regimes best describes the extended sample we consider
here which begins in 1951Q2 and ends in 2022Q3. In doing so, our results confirms evidence about
the Great Moderation in the sense that two of the three regimes have positive growth but experience
a reduction in variance following the mid-1980s as suggested by Gadea, Gómez-Loscos, and Pérez-
Quirós (2018), Gadea, Gómez-Loscos, and Pérez-Quirós (2019) among others but, in addition, we
find that the period of high volatility returns following the COVID-19 recession.
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Appendix

A: Figures

Figure A1: U.S. GNP % change from 1951Q2 - 2010Q4
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Note: Highlighted region corresponds to NBER recession dates

Figure A2: U.S. GNP % change from 1951Q2 - 2022Q3
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Figure A3: Smoothed Probabilities of Regimes for U.S. GNP % change from 1951Q2 - 2010Q4

Panel A: Markov switching model with M = 2 regimes
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Panel B: Markov switching model with M = 3 regimes
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Figure A4: Smoothed Probabilities of Regimes for U.S. GNP % change from 1951Q2 - 2022Q3

Panel A: Markov switching model with M = 3 regimes
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Panel B: Markov switching model with M = 4 regimes
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